题目内容

13.已知关于x的方程x2+(a+1)x+a+2b+1=0的两个实根分别为x1,x2,且0<x1<1,x2>1,则$\frac{b}{a}$的取值范围是(  )
A.$(-1,-\frac{1}{4})$B.$(-1,-\frac{1}{4}]$C.(-1,+∞)D.$(-∞,-\frac{1}{4})$

分析 令f(x)=x2+(a+1)x+a+2b+1,由于关于x的方程x2+(a+1)x+a+2b+1=0的两个实根分别为x1,x2,且0<x1<1,x2>1,可得f(0)>0,f(1)<0,再利用线性规划的有关知识即可得出.

解答 解:令f(x)=x2+(a+1)x+a+2b+1,
∵关于x的方程x2+(a+1)x+a+2b+1=0的两个实根分别为x1,x2,且0<x1<1,x2>1,
∴f(0)>0,f(1)<0,
∴a+2b+1>0,1+a+1+a+2b+1<0,
即a+2b+1>0,2a+2b+3<0,
设$\frac{b}{a}$=k,即b=ka,
联立$\left\{\begin{array}{l}a+2b+1=0\\ 2a+2b+3=0\end{array}\right.$,解得P(-2,$\frac{1}{2}$).
∴-1<k<-$\frac{1}{4}$,
故选:A

点评 本题考查了二次函数的性质、线性规划的有关知识、一元二次方程有实数根的条件,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网