题目内容

8.函数f(x)=48x-x3,x∈[-3,5]的最小值为(  )
A.128B.-128C.-117D.115

分析 由f'(x)=48-3x2=3(16-x2)=3(4-x)(4+x),令f'(x)=0,得x1=-4,x2=4,列表讨论能求出函数f(x)=48x-x3在区间x∈[-3,5]上的最小值.

解答 解:由f'(x)=48-3x2=3(16-x2)=3(4-x)(4+x)
令f'(x)=0即3(4-x)(4+x)=0,∴x1=-4,x2=4
又x∈[-3,5],列表:

x-3(-3,4)4(4,5)5
f'(x)+0-
f(x)-117128-27
由上表得,当x∈[-3,5]时,
此函数的递增区间为(-3,4),减区间为(4,5),
当x=4时,此函数的极大值为128,
又f(-3)=-117,f(5)=-27,
∴f(x)的最小值为f(-3)=-117.
故选:C.

点评 本题主要考查了利用函数的导数求出函数的单调性以及函数的极值问题,考查学生分析解决问题的能力,利用导数研究函数的单调性的能力,解题时要认真审题,注意导数性质的合理运用.是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网