题目内容
17.已知函数f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$.(1)求f(x)的定义域.
(2)若f(a)=2,求a的值;
(3)求证:f($\frac{1}{x}$)=-f(x)
分析 (1)根据分母不是0,求出函数的定义域即可;(2)令2=$\frac{1{+a}^{2}}{1{-a}^{2}}$,解出即可;(3)令x=$\frac{1}{x}$,带入f(x)的解析式,整理即可.
解答 解:(1)∵函数f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$,
故1-x2≠0,解得:x≠±1,
故函数的定义域是{x|x≠±1};
(2)若f(a)=2=$\frac{1{+a}^{2}}{1{-a}^{2}}$,
即1+a2=2-2a2,
解得:a=±$\frac{\sqrt{3}}{3}$;
(3)f($\frac{1}{x}$)=$\frac{1+\frac{1}{{x}^{2}}}{1-\frac{1}{{x}^{2}}}$=$\frac{{x}^{2}+1}{{x}^{2}-1}$=-f(x).
点评 本题考查了求函数的定义域问题,考查函数求值问题,考查等式的证明,是一道基础题.
练习册系列答案
相关题目
8.从集合{a,b,c,d,e}的所有子集中,任取一个,所取集合恰是集合{a,b,c}子集的概率是( )
| A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
5.已知角α(0<α<$\frac{π}{2}$)的终边经过点(cos2β,1+sin3βcosβ-cos3βsinβ),($\frac{π}{2}$<β<π,且β≠$\frac{3π}{4}$),则α-β=( )
| A. | -$\frac{7π}{4}$ | B. | -$\frac{3π}{4}$ | C. | -$\frac{π}{4}$ | D. | $\frac{5π}{4}$ |
12.在?ABCD中,AB=AC=1,∠ACD=90°,将它沿着对角线AC折起,使AB与CD成60°角,则BD的长度为( )
| A. | 2 | B. | 2或$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | 3$\sqrt{2}$或2$\sqrt{2}$ |
6.下列不等式中,正确的是( )
| A. | 若x∈R,则$x+\frac{4}{x}≥4$ | B. | 若x∈R,则${x^2}+2+\frac{1}{{{x^2}+2}}≥2$ | ||
| C. | 若x∈R,则${x^2}+1+\frac{1}{{{x^2}+1}}≥2$ | D. | 若a、b为正实数,则$\frac{{\sqrt{a}+\sqrt{b}}}{2}≥\sqrt{ab}$ |