题目内容

12.在?ABCD中,AB=AC=1,∠ACD=90°,将它沿着对角线AC折起,使AB与CD成60°角,则BD的长度为(  )
A.2B.2或$\sqrt{2}$C.$\sqrt{2}$D.3$\sqrt{2}$或2$\sqrt{2}$

分析 利用向量的加法,$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{AC}$+$\overrightarrow{CD}$,等式两边进行平方,求出BD的长度即可.

解答 解:∵∠ACD=90°,∴$\overrightarrow{AC}$$•\overrightarrow{CD}$=0.
同理$\overrightarrow{BA}$$•\overrightarrow{AC}$=0.
∵AB和CD成60°角,∴<$\overrightarrow{BA}$,$\overrightarrow{CD}$>=60°或120°.
∵$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{AC}$+$\overrightarrow{CD}$,
∴${\overrightarrow{BD}}^{2}$=3+2×1×1×cos<$\overrightarrow{BA}$,$\overrightarrow{CD}$>
∴|$\overrightarrow{BD}$|=2或$\sqrt{2}$,
故选B.

点评 本小题主要考查异面直线所成的角,以及数量积表示两个向量的夹角,考查空间想象能力、运算能力和推理论证能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网