题目内容
函数f(x)=sin
x,对任意的实数t,记f(x)在[t,t+1]上的最大值为M(t),最小值为m(t),则函数
h(t)=M(t)-m(t)的值域为 .
| π |
| 2 |
h(t)=M(t)-m(t)的值域为
考点:三角函数的最值
专题:计算题,函数的性质及应用,三角函数的图像与性质
分析:求出周期,画出f(x)的图象,讨论(1)当4n-1≤t≤4n,(2)当4n<t<4n+1,(3)当4n+1≤t≤4n+2,(4)当4n+2<t<4n+3,分别求出最大值和最小值,再求h(t)的值域,最后求并集即可得到.
解答:
解:函数f(x)=sin
x的周期为T=
=4,
(1)当4n-1≤t≤4n,n∈Z,区间[t,t+1]为增区间,则有m(t)=sin
,M(t)=sin
=cos
;
(2)当4n<t<4n+1,n∈Z,①若4n<t≤4n+
,
则M(t)=1,m(t)=sin
,
②若4n+
<t<4n+1,则M(t)=1,m(t)=cos
;
(3)当4n+1≤t≤4n+2,则区间[t,t+1]为减区间,则有M(t)=sin
,m(t)=cos
;
(4)当4n+2<t<4n+3,则m(t)=-1,
①当4n+2<t≤4n+
时,M(t)=sin
,
②当4n+
<t<4n+3时,M(t)=cos
.
则有h(t)=M(t)-m(t)
=
当4n-1≤t≤4n,h(t)的值域为[1,
],
当4n<t≤4n+
,h(t)的值域为[1-
,1),
当4n+
<t<4n+1,h(t)的值域为(1-
,1),
当4n+1≤t≤4n+2,h(t)的值域为[1,
],
当4n+2<t≤4n+
时,h(t)的值域为[1-
,1),
当4n+
<t<4n+3时,h(t)的值域为[1-
,1).
综上,h(t)=M(t)-m(t)的值域为[1-
,
].
故答案为:[1-
,
].
| π |
| 2 |
| 2π | ||
|
(1)当4n-1≤t≤4n,n∈Z,区间[t,t+1]为增区间,则有m(t)=sin
| πt |
| 2 |
| π(t+1) |
| 2 |
| πt |
| 2 |
(2)当4n<t<4n+1,n∈Z,①若4n<t≤4n+
| 1 |
| 2 |
则M(t)=1,m(t)=sin
| πt |
| 2 |
②若4n+
| 1 |
| 2 |
| πt |
| 2 |
(3)当4n+1≤t≤4n+2,则区间[t,t+1]为减区间,则有M(t)=sin
| πt |
| 2 |
| πt |
| 2 |
(4)当4n+2<t<4n+3,则m(t)=-1,
①当4n+2<t≤4n+
| 5 |
| 2 |
| πt |
| 2 |
②当4n+
| 5 |
| 2 |
| πt |
| 2 |
则有h(t)=M(t)-m(t)
=
|
当4n-1≤t≤4n,h(t)的值域为[1,
| 2 |
当4n<t≤4n+
| 1 |
| 2 |
| ||
| 2 |
当4n+
| 1 |
| 2 |
| ||
| 2 |
当4n+1≤t≤4n+2,h(t)的值域为[1,
| 2 |
当4n+2<t≤4n+
| 5 |
| 2 |
| ||
| 2 |
当4n+
| 5 |
| 2 |
| ||
| 2 |
综上,h(t)=M(t)-m(t)的值域为[1-
| ||
| 2 |
| 2 |
故答案为:[1-
| ||
| 2 |
| 2 |
点评:本题考查三角函数的性质和运用,考查函数的周期性和单调性及运用,考查运算能力,有一定的难度.
练习册系列答案
相关题目
函数f(x)=sin(2x+θ)+
cos(2x+θ),(|θ|<
)的图象关于点(
,0)对称,则f(x)的增区间( )
| 3 |
| π |
| 2 |
| π |
| 6 |
A、[
| ||||
B、[-
| ||||
C、[-
| ||||
D、[-
|