题目内容

2.在△ABC中,a,b,c分别是角A,B,C的对边.已知(a2+b2)sin(A-B)=(a2-b2)sin(A+B),试判断该三角形的形状.

分析 利用两角和与差的三角函数以及正弦定理,推出$\frac{1}{2}sin2A=\frac{1}{2}sin2B$,求出A与B的关系,得到三角形的形状.

解答 解:∵(a2+b2)sin(A-B)=(a2-b2)sin(A+B),
∴(a2+b2)(sinAcosB-cosAsinB)=(a2-b2)(sinAcosB+cosAsinB),
即sinAcosB(a2+b2-a2+b2)=cosAsinB(a2-b2+a2+b2).
即sinAcosB(2b2)=cosAsinB(2a2).
sinAcosBsin2B=cosAsinBsin2A.
sinAcosB(sinBcosB-sinAcosA)=0.
$\frac{1}{2}sin2A=\frac{1}{2}sin2B$,
A=B或2A+2B=180°,
故三角形是等腰三角形或直角三角形.

点评 本题考查三角形的形状的判断,两角和与差的三角函数的应用,正弦定理的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网