题目内容

9.已知函数f(x)=x2+bx过(1,3)点,若数列{$\frac{1}{f(n)}$}的前n项和为Sn,则Sn的值为(  )
A.$\frac{n+1}{n+2}$B.$\frac{n+1}{2n+4}$C.$\frac{3}{2}$-$\frac{2n+3}{(n+1)(n+2)}$D.$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$

分析 利用数列与函数的关系求出b,得到数列的通项公式,然后利用裂项法求解数列的和即可.

解答 解:函数f(x)=x2+bx过(1,3)点,
可得:3=1+b,解得b=2,
可知:f(n)=n(n+2),∴$\frac{1}{f(n)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴Sn=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n-1}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.
故选:D.

点评 本题考查数列与函数相结合,数列的通项公式以及数列求和,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网