题目内容
1.已知函数f(x)=|ln||x-1||,f(x)-m的四个零点x1,x2,x3,x4,且k=$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$+$\frac{1}{{x}_{3}}$+$\frac{1}{{x}_{4}}$,则f(k)-ek的值是-e2.分析 利用对数的运算性质可得出$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=$\frac{1}{{x}_{3}}$+$\frac{1}{{x}_{4}}$=1,从而k=2,代入计算即可.
解答 解:显然f(x)的图象关于直线x=1对称,
不妨设x1<x2<x3<x4,则x1<x2<1<x3<x4,
∵f(x1)=f(x2),
∴ln(1-x1)=-ln(1-x2),
即1-x1=$\frac{1}{1-{x}_{2}}$,整理得x1x2=x1+x2,
∴$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=$\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$=1,
同理有:$\frac{1}{{x}_{3}}$+$\frac{1}{{x}_{4}}$=1,
∴k=$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$+$\frac{1}{{x}_{3}}$+$\frac{1}{{x}_{4}}$=2,
∴f(k)-ek=f(2)-e2=-e2.
故答案为:-e2.
点评 本题考查了对数的运算性质,属于中档题.
练习册系列答案
相关题目
11.把函数f(x)=cos2($\frac{π}{2}$x-$\frac{π}{6}$)的图象向左平移$\frac{1}{3}$个单位后得到的函数为g(x),则以下结论中正确的是( )
| A. | g($\frac{1}{5}$)>g($\frac{8}{5}$)>0 | B. | g($\frac{1}{5}$)$>0>g(\frac{8}{5})$ | C. | g($\frac{8}{5}$)>g($\frac{1}{5}$)>0 | D. | g($\frac{1}{5}$)=g($\frac{8}{5}$)>0 |
9.已知函数f(x)=x2+bx过(1,3)点,若数列{$\frac{1}{f(n)}$}的前n项和为Sn,则Sn的值为( )
| A. | $\frac{n+1}{n+2}$ | B. | $\frac{n+1}{2n+4}$ | C. | $\frac{3}{2}$-$\frac{2n+3}{(n+1)(n+2)}$ | D. | $\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$ |
6.实数x,y满足$\left\{\begin{array}{l}x-2y+2≥0\\ x+y≤1\\ y+1≥0\end{array}\right.$且z=2x-y,则z的最大值为( )
| A. | -7 | B. | -1 | C. | 5 | D. | 7 |
13.
中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
(1)由以上统计数据填2×2列联表,并判断是否95%的把握认为以45岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽2人.
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率;
②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
| 年龄 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65] |
| 支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
| 45岁以下 | 45岁以上 | 总计 | |
| 支持 | |||
| 不支持 | |||
| 总计 |
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率;
②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
| P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 6.635 | 10.828 |