题目内容
18.| A. | $\frac{5}{4}$ | B. | $\frac{24}{7}$ | C. | $-\frac{21}{24}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
分析 由题意可得A(0,b),B(a,0),F2(c,0),运用三角形的面积公式,结合双曲线的a,b,c的关系,可得a,b的关系,可得渐近线方程,再由两直线夹角的正切公式,计算即可得到所求值.
解答
解:由题意可得A(0,b),B(a,0),F2(c,0),
由${S_{△AB{F_2}}}=\frac{1}{4}{S_{△AOB}}$,
可得$\frac{1}{2}$b•(c-a)=$\frac{1}{4}$×$\frac{1}{2}$ab,
即有c=$\frac{5}{4}$a,
b=$\sqrt{{c}^{2}-{a}^{2}}$=$\frac{3}{4}$a,
可得双曲线的渐近线方程为y=±$\frac{3}{4}$x,
则双曲线的两条渐近线的夹角的正切值为:
|$\frac{\frac{3}{4}-(-\frac{3}{4})}{1-\frac{9}{16}}$|=$\frac{24}{7}$.
故选:B.
点评 本题考查双曲线的方程和性质,主要是渐近线方程的运用,考查三角形的面积公式的运用,以及运算能力,属于中档题.
练习册系列答案
相关题目
4.设实数x,y满足约束条件$\left\{\begin{array}{l}y-x≤0\\ x≤2\\ y≥\frac{1}{2}\end{array}\right.$,则$2x+\frac{1}{y}$的最小值为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | $2\sqrt{3}$ |
13.已知正方体ABCD-A1B1C1D1,设棱长为a,过BD且与直线AC1平行的截面面积是( )
| A. | $\frac{a^2}{2}$ | B. | $\frac{{\sqrt{6}}}{4}{a^2}$ | C. | $\frac{{\sqrt{3}}}{4}{a^2}$ | D. | $\frac{{\sqrt{3}}}{2}{a^2}$ |
10.
某工厂为制定下一阶段生产某种产品的方案,工厂技术部门开展了两项统计,其一是对该厂48名师傅生产的产品精度情况进行了调查,得到如下的2×2列联表1(单位:个);其二是对某师傅加工零件个数n1(单位:个)和加工时间t1(单位:小时,i-1,2,…6)作了6次试验,并对获得的数据作了初步处理,得到下面的散点图及一些统计量的值如表2.
表1:48名师傅生产的产品精度统计表(单位:个)
表2:
(1)判断是否有95%的把握人物产品达到精品级与师傅的职称有关?说明你的理由;
(2)根据散点图判断t与n是否具有线性相关关系?若具有,依据表中数据求出t关于n的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并预测该师傅加工10个零件需要多少时间?
附:(1)参考临界值有:
参考公式:K2=$\frac{m(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中m=a+b+c+d.
(2)对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$的斜率和截距的最小二乘估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
表1:48名师傅生产的产品精度统计表(单位:个)
| 类别 | 达到精品级 | 未达到精品级 | 总计 |
| 高级技工 | 22 | 6 | 28 |
| 中级技工 | 10 | 10 | 20 |
| 总计 | 32 | 16 | 48 |
| $\overline{n}$=$\frac{1}{6}$$\sum_{i=1}^{6}{n}_{i}$ | $\overline{t}$=$\frac{1}{6}$$\sum_{i=1}^{6}{t}_{i}$ | $\sum_{i=1}^{6}{n}_{i}$ 2 | $\sum_{i=1}^{6}{t}_{i}$ 2 | $\sum_{i=1}^{6}{n}_{i}{t}_{i}$ | $\sum_{i=1}^{6}$(ni-$\overline{n}$)2 | $\sum_{i=1}^{6}$(ti-$\overline{t}$)2 | $\sum_{i=1}^{6}$(ni-$\overline{n}$)(ti-$\overline{t}$) |
| 4.5 | 4.125 | 139 | 109.562 | 112.75 | 17.5 | 7.468 | 11.375 |
(2)根据散点图判断t与n是否具有线性相关关系?若具有,依据表中数据求出t关于n的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并预测该师傅加工10个零件需要多少时间?
附:(1)参考临界值有:
参考公式:K2=$\frac{m(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中m=a+b+c+d.
(2)对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$的斜率和截距的最小二乘估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
8.函数y=loga(x+2)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为( )
| A. | 3+2$\sqrt{2}$ | B. | 3+2$\sqrt{3}$ | C. | 7 | D. | 11 |