题目内容

9.已知3sin$\frac{x}{2}-cos\frac{x}{2}$=0.
(1)求tanx;
(2)求$\frac{cos2x}{{\sqrt{2}cos(\frac{π}{4}+x)sinx}}$的值.

分析 利用同角三角函数的基本关系、二倍角公式,求得要求式子的值.

解答 解:(1)∵$3sin\frac{x}{2}-cos\frac{x}{2}=0$,∴$tan\frac{x}{2}=\frac{1}{3}$,
∴$tanx=\frac{{2tan\frac{x}{2}}}{{1-{{tan}^2}\frac{x}{2}}}=\frac{{2×\frac{1}{3}}}{{1-{{(\frac{1}{3})}^2}}}=\frac{3}{4}$.
(2)$\frac{cos2x}{{\sqrt{2}cos(\frac{π}{4}+x)sinx}}$=$\frac{{{{cos}^2}x-{{sin}^2}x}}{(cosx-sinx)sinx}$=$\frac{{{{cos}^2}x-{{sin}^2}x}}{{cosxsinx-{{sin}^2}x}}$=$\frac{{1-{{tan}^2}x}}{{tanx-{{tan}^2}x}}$=$\frac{{1-{{(\frac{3}{4})}^2}}}{{\frac{3}{4}-{{(\frac{3}{4})}^2}}}$=$\frac{7}{3}$.

点评 本题主要考查同角三角函数的基本关系、二倍角公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网