题目内容

3.已知数列{an}是公比不等于1的等比数列,前n项和为Sn,a11=512,且S8、S7、S9成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=n|an|,数列{bn}的前n项和为Tn,求Tn

分析 (Ⅰ)由a11=512,且S8、S7、S9成等差数列,求出首项、公比即可;
(Ⅱ)利用错位相减法求和.

解答 解:(Ⅰ)设等比数列数列{an}的公比为q(q不等于1),
∵S8、S7、S9成等差数列,∴2S7=S8+S9,⇒2a8+a9=0,q=$\frac{{a}_{9}}{{a}_{8}}=-2$,
∵a11=a1×q10=512,∴a1=$\frac{1}{2}$,∴an=$\frac{1}{2}$×(-2)n-1
(Ⅱ)依题意有bn=n|an|=n•2n-2,数列{bn}的前n项和为Tn'
 Tn=1×$\frac{1}{2}$+2×1+3×2+…+n×2n-2
2Tn=1×1+2×2+3×22+…+(n-1)×2n-2+n×2n-1
所以-2Tn=$\frac{1}{2}$+1+21+22+…+2n-1-n×2n-1
=$\frac{\frac{1}{2}(1-{2}^{n})}{1-2}-n×{2}^{n-1}=-\frac{1}{2}+{2}^{n-1}-n×{2}^{n-1}$
 Tn=$\frac{1}{2}$+(n-1)×2n-1

点评 本题考查了等比数列的运算,及错位相减法求和,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网