题目内容

15.函数f(x)=lnx+3x-7的零点所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

分析 由函数的解析式求得f(2)f(3)<0,再根据根据函数零点的判定定理可得函数f(x)的零点所在的区间.

解答 解:∵函数f(x)=lnx+3x-7在其定义域上单调递增,
∴f(2)=ln2+2×3-7=ln2-1<0,f(3)=ln3+9-7=ln3+2>0,
∴f(2)f(3)<0.
根据函数零点的判定定理可得函数f(x)的零点所在的区间是(2,3),
故选:C.

点评 本题主要考查求函数的值,函数零点的判定定理,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网