题目内容
△ABC中,求证:
+
+
=0.
| a2-b2 |
| cosA+cosB |
| b2-c2 |
| cosB+cosC |
| c2-a2 |
| cosC+cosA |
考点:余弦定理
专题:解三角形
分析:利用正弦定理可得
=
=
=2R≠0,a2-b2=4R2(sin2A-sin2B)=4R2(cos2B-cos2A),同理可得b2-c2=4R2(cos2C-cos2B),c2-a2=4R2(cos2A-cos2C),代入等式的左边化简即可证明.
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
解答:
证明:由正弦定理可得
=
=
=2R≠0,
∴a2-b2=4R2(sin2A-sin2B)=4R2[1-cos2A-(1-cos2B)]=4R2(cos2B-cos2A),
同理可得b2-c2=4R2(cos2C-cos2B),c2-a2=4R2(cos2A-cos2C),
∴左边=4R2[(cosB-cosA)+(cosC-cosB)+(cosA-cosC)]=0=右边.
∴
+
+
=0.
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
∴a2-b2=4R2(sin2A-sin2B)=4R2[1-cos2A-(1-cos2B)]=4R2(cos2B-cos2A),
同理可得b2-c2=4R2(cos2C-cos2B),c2-a2=4R2(cos2A-cos2C),
∴左边=4R2[(cosB-cosA)+(cosC-cosB)+(cosA-cosC)]=0=右边.
∴
| a2-b2 |
| cosA+cosB |
| b2-c2 |
| cosB+cosC |
| c2-a2 |
| cosC+cosA |
点评:本题考查了正弦定理的应用、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
方程x3-x-3=0的实数解落在的区间是( )
| A、[-1,0] |
| B、[0,1] |
| C、[1,2] |
| D、[2,3] |
函数f(x)=|sinx|+2|cosx|的值域为( )
A、[1,
| ||
| B、[1,2] | ||
C、[2,
| ||
D、[
|