题目内容

(1+x)十(1+x)2+…+(1+x)n=a0+a1x+a2x2+…+anxn,若a1+a2+a3+…+an-1=509-n,求自然数n=
 
考点:二项式定理的应用
专题:二项式定理
分析:由题意可得可得an=1,a0=n.在所给的等式中,令x=1,求得a1+a2+a3+…+an-1=2n+1-3-n.再根据已知a1+a2+a3+…+an-1=509-n,可得 2n+1-3-n=509-n,由此求得n的值.
解答: 解:由(1+x)十(1+x)2+…+(1+x)n=a0+a1x+a2x2+…+anxn
可得an=1,a0=n.
在上述等式中,令x=1,可得2十22+…+2n =
2(1-2n)
1-2
=2n+1-2=a0+a1+a2+…+an
即 2n+1-2=n+a1+a2+…+an-1 +1,∴a1+a2+a3+…+an-1=2n+1-3-n.
再根据已知a1+a2+a3+…+an-1=509-n,可得 2n+1-3-n=509-n,
求得 2n+1=512,故n=8,
故答案为:8.
点评:本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网