题目内容
11.(文科)已知函数f(x)=$\left\{\begin{array}{l}-x+2,\;\;\;\;x≥1\\{2^{x-1}},\;\;\;\;\;\;\;x<1\end{array}\right.$,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(0,1).分析 作函数f(x)=$\left\{\begin{array}{l}-x+2,\;\;\;\;x≥1\\{2^{x-1}},\;\;\;\;\;\;\;x<1\end{array}\right.$的图象,利用数形结合求解.
解答 解:作函数f(x)=$\left\{\begin{array}{l}-x+2,\;\;\;\;x≥1\\{2^{x-1}},\;\;\;\;\;\;\;x<1\end{array}\right.$的图象如下,
,
结合图象可知,
实数k的取值范围是(0,1);
故答案为:(0,1).
点评 本题考查了分段函数的应用及数形结合的思想应用,注意分段作出函数的图象即可.
练习册系列答案
相关题目
20.若将函数y=sin(ωx+$\frac{π}{4}$)(ω>0)向左平移$\frac{π}{6}$个单位长度后,与函数y=cos(ωx+$\frac{π}{4}$)的图象重合,则ω的最小值为3.
6.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长轴长、短轴长、焦距成等差数列,则椭圆的离心率是( )
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{{\sqrt{5}-1}}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
16.在△ABC中,三个内角A、B、C所对的边分别为a、b、c,若内角A、B、C依次成等差数列,且不等式-x2+6x-8>0的解集为{x|a<x<c},则S△ABC等于( )
| A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 4$\sqrt{3}$ |