题目内容
18.求下列函数的取值范围:(1)y=x2-4x+3(4≤x≤9);
(2)y=x2-6x+2(-1≤x≤4);
(3)y=-x2-8x+9(-6≤x≤0).
分析 利用配方法,结合函数的单调性,即可求出函数的取值范围.
解答 解:(1)y=x2-4x+3=(x-2)2-1
∵4≤x≤9,函数单调递增,
∴y∈[3,48];
(2)y=x2-6x+2=(x-3)2-7
∵-1≤x≤4,
∴x∈[-1,3],函数单调递减,x∈[3,4],函数单调递增,
∴y∈[-7,9];
(3)y=-x2-8x+9=-(x+4)2+25
∵-6≤x≤0,
∴x∈[-6,-4],函数单调递增,x∈[-4,0],函数单调递减,
∴y∈[9,25].
点评 本题考查二次函数在指定区间上的取值范围,考查配方法的运用,属于中档题.
练习册系列答案
相关题目
9.中央电视台公开课《开讲啦》需要现场观众,现邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生数如下表所示:
从这40名学生中按分层抽样的方式抽取10名学生安排在第一排发言席就座.
(1)从抽取的10名学生中随机选出3名学生发言,求这3名学生中任意2名均不属于同一大学的概率;
(2)从抽取的10名学生中随机选出3名学生发言,设其中来自乙大学的学生人数为ξ,求随机变量ξ的分布列和数学期望.
| 大学 | 甲 | 乙 | 丙 | 丁 |
| 人数 | 8 | 12 | 8 | 12 |
(1)从抽取的10名学生中随机选出3名学生发言,求这3名学生中任意2名均不属于同一大学的概率;
(2)从抽取的10名学生中随机选出3名学生发言,设其中来自乙大学的学生人数为ξ,求随机变量ξ的分布列和数学期望.
6.函数y=ax3+1的图象与直线y=x相切,则a=( )
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{16}{27}$ | D. | $\frac{4}{27}$ |
8.设集中A={2,4,6},B={1,9,25,49,81,100},下面的对应关系f能构成A到B的映射的是( )
| A. | f:x→(2x-1)2 | B. | f:x→(2x-3) | C. | f:x→(2x-1) | D. | f:x→(2x-3)2 |