题目内容
若等边△ABC的边长为2
,平面内一点M满足
=
+
,则
•
= .
| 3 |
| CM |
| 1 |
| 6 |
| CB |
| 2 |
| 3 |
| CA |
| MA |
| MB |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由等边△ABC的边长为2
,可得
•
=6.再利用向量的三角形法则可得
=
+
,
=
+
,代入
•
=(
+
)•(
+
)=(-
-
+
)•(-
-
+
)即可得出.
| 3 |
| CA |
| CB |
| MA |
| MC |
| CA |
| MB |
| MC |
| CB |
| MA |
| MB |
| MC |
| CA |
| MC |
| CB |
| 1 |
| 6 |
| CB |
| 2 |
| 3 |
| CA |
| CA |
| 1 |
| 6 |
| CB |
| 2 |
| 3 |
| CA |
| CB |
解答:
解:如图所示,
由等边△ABC的边长为2
,
∴
•
=|
| |
|cos60°=2
×2
×
=6.
∵
=
+
,
=
+
,
∴
•
=(
+
)•(
+
)
=(-
-
+
)•(-
-
+
)
=(
-
)•(
-
)
=-
2-
2+
•
=-
×(2
)2-
×(2
)2+
×6
=-2.
故答案为:-2.
| 3 |
∴
| CA |
| CB |
| CA |
| CB |
| 3 |
| 3 |
| 1 |
| 2 |
∵
| MA |
| MC |
| CA |
| MB |
| MC |
| CB |
∴
| MA |
| MB |
| MC |
| CA |
| MC |
| CB |
=(-
| 1 |
| 6 |
| CB |
| 2 |
| 3 |
| CA |
| CA |
| 1 |
| 6 |
| CB |
| 2 |
| 3 |
| CA |
| CB |
=(
| 1 |
| 3 |
| CA |
| 1 |
| 6 |
| CB |
| 5 |
| 6 |
| CB |
| 2 |
| 3 |
| CA |
=-
| 2 |
| 9 |
| CA |
| 5 |
| 36 |
| CB |
| 7 |
| 18 |
| CA |
| CB |
=-
| 2 |
| 9 |
| 3 |
| 5 |
| 36 |
| 3 |
| 7 |
| 18 |
=-2.
故答案为:-2.
点评:本题考查了向量的三角形法则、数量积运算法则,属于基础题.
练习册系列答案
相关题目