题目内容
已知定义在R上的函数f(x)满足:对任意x,都有f(1+x)=f(1-x),且f(x)在(-∞,1]上是单调递增,若x1<x2,且x1+x2=3,则f(x1)与f(x2)的大小关系是( )
| A、f(x1)<f(x2) |
| B、f(x1)=f(x2) |
| C、f(x1)>f(x2) |
| D、不能确定 |
考点:函数单调性的性质
专题:计算题,函数的性质及应用
分析:若x1≤1,利用对称性把f(x1)变到区间[1,+∞)上用单调性与f(x2)比较;若x1>1,则由1<x1<x2直接用单调性可进行大小比较.
解答:
解:∵f(1+x)=f(1-x),
∴函数f(x)关于x=1对称,
∵f(x)在(-∞,1]上是单调递增,
∴f(x)在[1,+∞)上是单调递减,
若x1≤1,由x1+x2=3>2,得x2>2-x1≥1,
∴f(x1)=f(2-x1)>f(x2);
若x1>1,则1<x1<x2,∴f(x1)>f(x2),
综上知f(x1)>f(x2),
故选:C.
∴函数f(x)关于x=1对称,
∵f(x)在(-∞,1]上是单调递增,
∴f(x)在[1,+∞)上是单调递减,
若x1≤1,由x1+x2=3>2,得x2>2-x1≥1,
∴f(x1)=f(2-x1)>f(x2);
若x1>1,则1<x1<x2,∴f(x1)>f(x2),
综上知f(x1)>f(x2),
故选:C.
点评:本题考查函数的单调性,考查学生灵活运用知识分析解决问题的能力,由所给条件分析出函数的对称性、单调性是解决问题的关键,数形结合是分析本题的有力工具.
练习册系列答案
相关题目
已知cos(α-
)=
,则sin2α的值为( )
| π |
| 4 |
| 1 |
| 4 |
A、
| ||
B、-
| ||
C、
| ||
D、-
|
在△ABC中,a2+c2-b2=
ac,则∠B=( )
| 3 |
| A、60° | B、45° |
| C、120° | D、30° |
在下列命题中,正确的是( )
A、若|
| ||||||||
B、若|
| ||||||||
C、若
| ||||||||
D、若
|
若二次不等式 ax2+bx+6<0 的解集是{x|x<-2或x>3},则a=( )
| A、2 | B、-2 | C、1 | D、-1 |
若sin2θ-1+(
+1)i是纯虚数,则θ的值为( )
| 2 |
A、2kπ-
| ||||
B、kπ+
| ||||
C、2kπ±
| ||||
D、
|
关于曲线的对称性的论述正确的是( )
| A、方程x2+xy+y2=0的曲线关于X轴对称 |
| B、方程x3+y3=0的曲线关于Y轴对称 |
| C、方程x2-xy+y2=10的曲线关于原点对称 |
| D、方程x3-y3=8的曲线关于原点对称 |
三个实数a,b,c依次成公差不为零的等差数列,且a,c,b成等比数列,则
的值是( )
| a |
| b |
| A、-2 | B、2 | C、4 | D、-4 |