题目内容
2.点P从点(-1,0)出发,沿单位圆x2+y2=1顺时针方向运动$\frac{π}{3}$弧长到达Q点,则Q点的坐标为(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).分析 由题意可得OQ恰好是角$\frac{2π}{3}$的终边,利用任意角的三角函数的定义,求得Q点的坐标.
解答 解:点P从点(-1,0)出发,沿单位圆x2+y2=1顺时针方向运动$\frac{π}{3}$弧长到达Q点,
则OQ恰好是角$\frac{2π}{3}$的终边,故Q点的横坐标x=1•cos$\frac{2π}{3}$=-$\frac{1}{2}$,纵坐标为y=1•sin$\frac{2π}{3}$=$\frac{\sqrt{3}}{2}$,
故答案为:(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).
点评 本题主要考查任意角的三角函数的定义,属于基础题.
练习册系列答案
相关题目
7.“|x|+|y|≤1”是“x2+y2≤1”的( )条件.
| A. | 充分必要 | B. | 充分不必要 | ||
| C. | 必要不充分 | D. | 既不充分也不必要 |
12.化为推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户:
男性用户:
(1)如果评分不低于70分,就表示该用户对手机“认可”,否则就表示“不认可”,完成下列2×2列联表,并回答是否有95%的把握认为性别对手机的“认可”有关:
附:
K2=$\frac{n(a+d-b+c)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取2名用户,求2名用户中评分小于90分的概率.
女性用户:
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 20 | 40 | 80 | 50 | 10 |
| 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 45 | 75 | 90 | 60 | 30 |
| 女性用户 | 男性用户 | 合计 | |
| “认可”手机 | 140 | 180 | 320 |
| “不认可”手机 | 60 | 120 | 180 |
| 合计 | 200 | 300 | 500 |
| P(K2≥k) | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取2名用户,求2名用户中评分小于90分的概率.