题目内容
1.函数f(x)=1+4cosx-4sin2x,x∈[-$\frac{π}{4}$,$\frac{2π}{3}$],则f(x)的最小值为-7.分析 化函数f(x)为cosx的二次函数,根据x的取值范围求出cosx的值域,从而求出f(x)的最小值.
解答 解:函数f(x)=1+4cosx-4sin2x
=1+4cosx-4(1-cos2x)
=4cos2x+4cosx-3
=4${(cosx+\frac{1}{2})}^{2}$-7,
由x∈[-$\frac{π}{4}$,$\frac{2π}{3}$],得cosx∈[-$\frac{1}{2}$,1],
所以x=$\frac{2π}{3}$时,cosx=-$\frac{1}{2}$,
此时f(x)取得最小值为4×02-7=-7.
故答案为:-7.
点评 本题考查了三角函数的值域以及二次函数的最值问题,是基础题.
练习册系列答案
相关题目
12.将函数$y=sin({2x-\frac{π}{6}})$的图象向右平移$\frac{π}{4}$个单位,所得函数图象的一条对称轴方程为( )
| A. | $x=\frac{π}{12}$ | B. | $x=\frac{π}{6}$ | C. | $x=\frac{π}{3}$ | D. | $x=-\frac{π}{12}$ |
9.下列关于命题的说法错误的是( )
| A. | “a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件 | |
| B. | 命题“若随机变量X~N(1,4),P(X≤0)=m,则P(0<X<2)=1-2m”为真命题 | |
| C. | 命题“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0” | |
| D. | 若命题P:?n∈N,2n>1000,则?P:?n∈N,2n>1000 |
17.对于任意向量$\overrightarrow{a},\overrightarrow{b}$,下列命题中正确的是( )
| A. | 若$\overrightarrow{a},\overrightarrow{b}$满足|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,且$\overrightarrow{a}$与$\overrightarrow{b}$同向,则$\overrightarrow{a}$>$\overrightarrow{b}$ | B. | |$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$| | ||
| C. | |$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$| | D. | |$\overrightarrow{a}$-$\overrightarrow{b}$|≤|$\overrightarrow{a}$|-|$\overrightarrow{b}$| |