题目内容
20.在△ABC中,角A,B,C所对的边分别为a,b,c,其中c=3,$a=3\sqrt{2}$,$cosB=\frac{{\sqrt{2}}}{4}$,则sinA=( )| A. | $\frac{7}{24}$ | B. | $\frac{{3\sqrt{7}}}{8}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{14}}}{4}$ |
分析 利用余弦定理可得b,再利用正弦定理即可得出.
解答 解:∵在△ABC中,c=3,$a=3\sqrt{2}$,$cosB=\frac{{\sqrt{2}}}{4}$,
∴b2=a2+c2-2accosB=$(3\sqrt{2})^{2}$+32-2×$3\sqrt{2}$×3×$\frac{\sqrt{2}}{4}$=18,
解得b=3$\sqrt{2}$.
∵B∈(0,π),
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{14}}{4}$.
由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}$,
可得:sinA=$\frac{asinB}{b}$=$\frac{3\sqrt{2}×\frac{\sqrt{14}}{4}}{3\sqrt{2}}$=$\frac{\sqrt{14}}{4}$.
故选:D.
点评 本题考查了正弦定理与余弦定理的应用,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
15.设函数f(x)=(x+a)(|x-a+1|+|x-3|)-2x+4a的图象是中心对称图形,则实数a的值为( )
| A. | -$\frac{2}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
9.过点(4,-2),倾斜角为120°的直线方程是( )
| A. | $\sqrt{3}$x+y+2-4$\sqrt{3}$=0 | B. | $\sqrt{3}$x+3y+6+4$\sqrt{3}$=0 | C. | x+$\sqrt{3}$y-2$\sqrt{3}$-4=0 | D. | x+$\sqrt{3}$y+2$\sqrt{3}$-4=0 |