ÌâÄ¿ÄÚÈÝ
12£®ÒÑÖª¼«×ø±êϵµÄ¼«µãÔÚÆ½ÃæÖ±½Ç×ø±êϵµÄÔµãO´¦£¬¼«ÖáÓëxÖáµÄÕý°ëÖáÖØºÏ£¬ÇÒ³¤¶Èµ¥Î»Ïàͬ£»ÇúÏßCµÄ·½³ÌÊÇ$¦Ñ=2\sqrt{2}sin£¨¦È-\frac{¦Ð}{4}£©$£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+tcos¦Á\\ y=1+tsin¦Á\end{array}\right.$£¨tΪ²ÎÊý£¬0¡Ü¦Á£¼¦Ð£©£¬ÉèP£¨2£¬1£©£¬Ö±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£®£¨1£©µ±¦Á=0ʱ£¬Çó|AB|µÄ³¤¶È£»
£¨2£©Çó|PA|2+|PB|2µÄȡֵ·¶Î§£®
·ÖÎö £¨1£©°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬ÁªÁ¢¼´¿ÉµÃ³ö£»
£¨2£©Éèt1£¬t2ΪÏàÓ¦²ÎÊýÖµt2+6tcos¦Á+7=0£¬¡÷£¾0£¬cos2¦Á£¾$\frac{7}{9}$£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¿ÉµÃ|PA|2+|PB|2=£¨-6cos¦Á£©2-14¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÇúÏßCµÄ·½³ÌÊÇ$¦Ñ=2\sqrt{2}sin£¨¦È-\frac{¦Ð}{4}£©$£¬»¯Îª¦Ñ2=2¦Ñsin¦È-2¦Ñcos¦È£¬
¡àx2+y2=2y-2x£¬
ÇúÏßCµÄ·½³ÌΪ£¨x+1£©2+£¨y-1£©2=2£®
µ±¦Á=0ʱ£¬Ö±Ïßl£ºy=1£¬
´úÈëÇúÏßC¿ÉµÃx+1=¡À2£®½âµÃx=1»ò-3£®
¡à|AB|=4£®
£¨2£©Éèt1£¬t2ΪÏàÓ¦²ÎÊýÖµt2+6tcos¦Á+7=0£¬¡÷£¾0£¬¡àcos2¦Á£¾$\frac{7}{9}$
¡àt1+t2=-6cos¦Á£¬t1t2=7£®
¡à|PA|2+|PB|2=£¨-6cos¦Á£©2-14£¬
¡à|PA|2+|PB|2¡Ê£¨14£¬22]£®
µãÆÀ ±¾Ì⿼²éÁ˰Ѽ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢²ÎÊýµÄ¼¸ºÎÒâÒ壬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÆäÖÐc=3£¬$a=3\sqrt{2}$£¬$cosB=\frac{{\sqrt{2}}}{4}$£¬ÔòsinA=£¨¡¡¡¡£©
| A£® | $\frac{7}{24}$ | B£® | $\frac{{3\sqrt{7}}}{8}$ | C£® | $\frac{{\sqrt{2}}}{4}$ | D£® | $\frac{{\sqrt{14}}}{4}$ |
1£®Ô²MµÄ·½³Ì£ºx2+y2+2x-2y-2=0£¬ÔòÆäÔ²ÐÄMµÄ×ø±ê¼°°ë¾¶rΪ£¨¡¡¡¡£©
| A£® | M£¨-1£¬1£©£¬r=2 | B£® | M£¨-1£¬1£©£¬r=4 | C£® | M£¨1£¬-1£©£¬r=2 | D£® | M£¨1£¬-1£©£¬r=4 |
2£®¹ØÓÚxµÄ²»µÈʽ|x2-3x|¡Ýkx-x2-9ÔÚx¡Ê[1£¬5]ÉϺã³ÉÁ¢£¬ÔòʵÊýkµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬6] | B£® | £¨-¡Þ£¬6£© | C£® | £¨0£¬6] | D£® | [6£¬+¡Þ£© |