题目内容

地平面上一旗杆OP,为测得它的高度h,在地平面上取一基线AB,AB=30m,在A处测得旗杆顶P点的仰角为θ且tanθ=
1
2
,在B处测得P点的仰角∠OBP=45°,又测得∠AOB=60°,求旗杆的高h.
考点:解三角形的实际应用
专题:应用题,解三角形
分析:分别在直角三角形AOP和直角三角形BDP中,求得OA,OB,进而在△AOB中,由余弦定理求得旗杆的高度.
解答: 解:在直角△AOP中,得OA=2h.
在直角△BOP中,得OB=OPcot45°=h
在△AOB中,由余弦定理得302=4h2+h2-2•2h•h•cos60°
∴h=10
3
m.
点评:本题主要考查了解三角形的实际应用.考查了学生运用数学知识解决实际问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网