题目内容

给出如下四个命题:
①若“p且q”为假命题,则p,q均为假命题;
②命题“若a>b,则a3>b3”的否命题为“若a≤b,则a3≤b3”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;
④在△ABC中,“A>B”是“sinA>sinB”的充要条件.
其中正确的命题序号是(  )
A、①②B、②④C、②③D、①④
考点:命题的真假判断与应用
专题:简易逻辑
分析:①根据复合命题与简单命题之间的关系进行判断.②根据否命题的定义进行判断.③根据含有量词的命题的否定进行判断.④根据正弦定理及充要条件的定义进行判断.
解答: 解:①若“p且q”为假命题,则p、q至少有一个为假命题,∴①错误.
②根据命题的否命题可知,命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”,∴②正确.
③全称命题的否定是特称命题,得③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1<1”.∴③错误.
④在△ABC中,sinA>sinB?sinA•2R>sinB•2R?a>b?A>B,∴④正确;
故②④正确;
故选:B.
点评:本题主要考查四种命题之间的关系,复合命题与简单命题之间的关系以及含有量词的命题的否定,充要条件的定义,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网