题目内容

8.△ABC的内角A,B,C的对边分别为a,b,c,且cosA•cosC-cos(A+C)=sin2B.
(Ⅰ)证明:a,b,c成等比数列;
(Ⅱ)若角B的平分线BD交AC于点D,且b=6,S△BAD=2S△BCD,求BD.

分析 (Ⅰ)利用两角和的余弦函数公式化简已知等式可得sinAsinC=sin2B,由正弦定理可得:b2=ac,即可得证.
(Ⅱ)由已知可得:AD+CD=6,由三角形面积公式可得AD=2CD,从而可求AD=4,CD=2,由(Ⅰ)可得:b2=36,利用角平分线的性质可得AB=2BC,即c=2a,从而可求a,c的值,进而利用余弦定理可求cosA,即可由余弦定理求得BD的值.

解答 (本题满分为12分)
解:(Ⅰ)证明:∵cosA•cosC-cos(A+C)=sin2B.
∴cosA•cosC-(cosAcosC-sinAsinC)=sin2B,可得:sinAsinC=sin2B,
∴由正弦定理可得:b2=ac,
∴a,b,c成等比数列;
(Ⅱ)如图,∵角B的平分线BD交AC于点D,且b=6,可得:AD+CD=6,
∵S△BAD=2S△BCD,可得:AD=2CD,
∴解得:AD=4,CD=2,
∵由(Ⅰ)可得:b2=ac=36,
∵$\frac{AB}{BC}$=$\frac{AD}{DC}=\frac{4}{2}$,可得:AB=2BC,即c=2a,
∴解得:a=3$\sqrt{2}$,c=6$\sqrt{2}$,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{5\sqrt{2}}{8}$,
∴BD=$\sqrt{{c}^{2}+A{D}^{2}-2c•AD•cosA}$=2$\sqrt{7}$.

点评 本题主要考查了两角和的余弦函数公式,正弦定理,三角形面积公式,角平分线的性质,余弦定理在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网