题目内容
13.集合A={x|-2-a<x<a,a>0},命题p:1∈A,命题q:2∈A,若p∨q为真命题,p∧q为假命题,则a的取值范围是( )| A. | 0<a<1或a>2 | B. | 0<a<1或α≥2 | C. | 1<a≤2 | D. | 1≤a≤2 |
分析 由于p∨q为真命题,p∧q为假命题,故可根据复合命题真假的判断方法可得出有两种情况:p真q假或p假q真讨论即可得解.
解答 解:∵p∨q为真命题,p∧q为假命题
∴当p真q假时有 $\left\{\begin{array}{l}{-2-a<1<a}\\{a≤2}\end{array}\right.$,故1<a≤2
当p假q真时有 $\left\{\begin{array}{l}{a≤1}\\{-2-a<2<a}\end{array}\right.$,故a∈∅
综上:1<a≤2
故选:C.
点评 本题主要考查了复合命题的真假性判断和应用.解题的关键是要分析出p真q假或p假q真这两种情况.
练习册系列答案
相关题目
5.椭圆4x2+5y2=1的左、右焦点为F,F′,过F′的直线与椭圆交于M,N,则△MNF的周长为( )
| A. | 2 | B. | 4 | C. | $\frac{4\sqrt{5}}{5}$ | D. | 4$\sqrt{5}$ |
2.某军区老干部休养所(简称军干所)为纪念抗战胜利70周年,举行老干部捐赠抗战纪念品教育下一代的活动,随机抽取a名老干部为样本,得到这些老干部捐赠抗战纪念品的个数,根据此数据作出了频率分布表:
(1)求出表中m,n,p,a的值;
(2)军干所决定对捐赠抗战纪念品的老干部进行表彰,对捐赠抗战纪念品数在[16,20]区间的老干部发放价值400元的奖品,对捐赠抗战纪念品数在[11,15]区间的老干部发放价值300元的奖品,对捐赠抗战纪念品数在[6,10]区间的老干部发放价值200元的奖品,对捐赠抗战纪念品数在[1,5]区间的老干部发放价100元的奖品,在所取样本中,任意抽取2人,并设x为此二人所获得奖品价值之差的绝对值,求x的分布列与数学期望E(X).
| 分组 | 频数 | 频率 |
| [1,5) | 5 | 0.2 |
| [6,10) | 15 | m |
| [11,15) | n | P |
| [16,20) | 1 | 0.04 |
| 合计 | a | 1 |
(2)军干所决定对捐赠抗战纪念品的老干部进行表彰,对捐赠抗战纪念品数在[16,20]区间的老干部发放价值400元的奖品,对捐赠抗战纪念品数在[11,15]区间的老干部发放价值300元的奖品,对捐赠抗战纪念品数在[6,10]区间的老干部发放价值200元的奖品,对捐赠抗战纪念品数在[1,5]区间的老干部发放价100元的奖品,在所取样本中,任意抽取2人,并设x为此二人所获得奖品价值之差的绝对值,求x的分布列与数学期望E(X).
3.若两平行直线2x+y-4=0与y=-2x-m-2间的距离不大于$\sqrt{5}$,则m的取值范围是( )
| A. | [-11,-1] | B. | [-11,0] | C. | [-11,-6]∪(-6,-1] | D. | [-1,+∞) |