题目内容

1.已知函数f(x)=2x+2ax+b且f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$.
(1)求a,b的值:
(2)判断并证明f(x)的奇偶性:
(3)判斯并证明函数f(x)在[0,+∞)的单调性,并求f(x)的值域.

分析 (1)列方程组解出,(2)求出f(-x),判断与f(x)的关系,(3)求导数,判断导函数的符号,得出函数的单调性,根据单调性求出最值.

解答 解:(1)∵f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$,∴$\left\{\begin{array}{l}{2+{2}^{a+b}=\frac{5}{2}}\\{{2}^{2}+{2}^{2a+b}=\frac{17}{4}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-1}\\{b=0}\end{array}\right.$.
(2)由(1)知f(x)=2x+2-x,f(x)的定义域为R.f(-x)=2-x+2x=f(x),
∴f(x)是偶函数.
(3)f(x)在[0,+∞)上是增函数.
f′(x)=2xln2-2-xln2=ln2(2x-$\frac{1}{{2}^{x}}$).
∵x≥0,∴2x≥1,∴2x-$\frac{1}{{2}^{x}}$≥0,∴f′(x)≥0.
∴f(x)在[0,+∞)上是增函数.fmin(x)=f(0)=2,
∴f(x)的值域是[0,+∞).

点评 本题考查了函数解析式的求解,函数奇偶性,单调性的判断,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网