题目内容

20.已知函数f(x)=$\left\{\begin{array}{l}-{(x-1)^2},({x<1})\\(3-a)x+4a,({x≥1})\end{array}$为增函数,则实数a的取值范围是(  )
A.-1≤a<3B.a<3C.a>3或a≤-1D.-1<a<3

分析 函数f(x)是R上的增函数,具有连续性,3-a>0,且[-(x-1)2]max≤[(3-a)x+4a]min可得a的取值范围

解答 解:由题意:函数f(x)=$\left\{\begin{array}{l}-{(x-1)^2},({x<1})\\(3-a)x+4a,({x≥1})\end{array}$是R上的增函数,
∴3-a>0,且[-(x-1)2]max≤[(3-a)x+4a]min
即$\left\{\begin{array}{l}{3-a>0}\\{0≤3-a+4a}\end{array}\right.$,
解得:-1≤a<3.
故选A.

点评 本题考查了分段函数的性质的运用.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网