题目内容
12.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$的模长都为1,且<$\overrightarrow{OA}$,$\overrightarrow{OB}$>=120°,若正数λ,μ满足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,则λ+μ的最大值为2;分析 根据题意将已知的等式转化为向量的数量积运算,由向量的数量积运算、完全平方公式化简,再由基本不等式列出关于“λ+μ”的不等式,即可求出λ+μ的最大值.
解答 解:∵<$\overrightarrow{OA}$,$\overrightarrow{OB}$>=120°,正数λ,μ满足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,
且向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$的模长都为1,
∴${\overrightarrow{OC}}^{2}=(λ\overrightarrow{OA}+μ\overrightarrow{OB})^{2}$=${λ}^{2}{\overrightarrow{OA}}^{2}+2λμ\overrightarrow{OA}•\overrightarrow{OB}+{μ}^{2}{\overrightarrow{OB}}^{2}$
则1=λ2-λμ+μ2=(λ+μ)2-3λμ,
即3λμ=(λ+μ)2-1,
∵λ>0,μ>0,∴$λμ≤(\frac{λ+μ}{2})^{2}$,当且仅当λ=μ时取等号,
代入上式可得,${(λ+μ)}^{2}-1≤3{(\frac{λ+μ}{2})}^{2}$,
化简可得,(λ+μ)2≤4,则0<λ+μ≤2,
∴λ+μ的最大值是2,
故答案为:2.
点评 本题考查了向量的数量积运算,以及基本不等式在求最值中的应用,考查转化思想,化简、变形能力.
练习册系列答案
相关题目
3.
如图,抛物线的顶点在坐标原点,焦点为F,过抛物线上一点A(3,y)作准线l作垂线,垂直为B,若|AB|=|BF|,则抛物线的标准方程是( )
| A. | y2=$\frac{1}{2}$x | B. | y2=x | C. | y2=2x | D. | y2=4x |
20.已知函数f(x)=$\left\{\begin{array}{l}-{(x-1)^2},({x<1})\\(3-a)x+4a,({x≥1})\end{array}$为增函数,则实数a的取值范围是( )
| A. | -1≤a<3 | B. | a<3 | C. | a>3或a≤-1 | D. | -1<a<3 |
7.图中的阴影表示的集合中是( )

| A. | A∩∁UB | B. | B∩∁UA | C. | ∁U(A∩B) | D. | ∁U(A∪B) |
17.已知圆C(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0.有以下几个命题:
①直线l恒过定点(3,1);
②圆C被y轴截得的弦长为 4$\sqrt{6}$;
③直线 l与圆C恒相交;
④直线 l被圆C截得最短弦长时,l方程为2x-y-5=0,
其中正确命题的是( )
①直线l恒过定点(3,1);
②圆C被y轴截得的弦长为 4$\sqrt{6}$;
③直线 l与圆C恒相交;
④直线 l被圆C截得最短弦长时,l方程为2x-y-5=0,
其中正确命题的是( )
| A. | ②③ | B. | ①③④ | C. | ①②④ | D. | ①②③④ |
4.某单位为了了解用电量y(度)与气温X(0C)之间的关系,随机统计了某4天的用电量与当天气温,并作了如下的对照表:由表中数据,得回归直线方程$\hat y$=$\hat bx$+$\hat a$,若$\hat b$=-2,则$\hat a$=( )
| 气温X(0C) | 18 | 13 | 10 | -1 |
| 用电量y | 24 | 34 | 38 | 64 |
| A. | 60 | B. | 58 | C. | 62 | D. | 64 |
1.四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,则该四棱锥的外接球的半径为( )
| A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
2.已知等差数列{an}的前n项和为Sn,且3a3=a6+4若S5<10,则a2的取值范围是( )
| A. | (-∞,2) | B. | (-∞,0) | C. | (1,+∞) | D. | (0,2) |