题目内容

11.已知圆O和圆C的极坐标方程分别为ρ=2和ρ=4sinθ,点P为圆O上任意一点.
(1)若射线OP交圆C于点Q,且其方程为θ=$\frac{π}{3}$,求|PQ|得长;
(2)已知D(2,$\frac{3}{2}$π),若圆O和圆C的交点为A,B,求证:|PA|2+|PB|2+|PD|2为定值.

分析 (1)θ=$\frac{π}{3}$代入ρ=4sinθ,可得ρ=2$\sqrt{3}$,即可求出|PQ|;
(2)求出A,B,D的直角坐标,利用两点间的距离公式,即可得出结论.

解答 (1)解:θ=$\frac{π}{3}$代入ρ=4sinθ,可得ρ=2$\sqrt{3}$,
∴|PQ|=2$\sqrt{3}$-2;
(2)证明:由题意,A(-$\sqrt{3}$,1),B($\sqrt{3}$,1),D(0,-2),
设P(x,y),则|PA|2+|PB|2+|PD|2=(x+$\sqrt{3}$)2+(y-1)2+(x-$\sqrt{3}$)2+(y-1)2+x2+(y+2)2=3(x2+y2)+12=24,为定值.

点评 本题考查极坐标方程,考查两点间的距离公式,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网