题目内容
已知数列{an}的前n项和为Sn,且满足an+2Sn•Sn-1=0(n≥2,且n∈N),a1=
.
(1)求证:{
}是等差数列;
(2)若bn=Sn•Sn+1,求数列{bn}的前n项和为Tn.
| 1 |
| 2 |
(1)求证:{
| 1 |
| Sn |
(2)若bn=Sn•Sn+1,求数列{bn}的前n项和为Tn.
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)当n≥2时,an=Sn-Sn-1,由于满足an+2Sn•Sn-1=0(n≥2,且n∈N),可得Sn-Sn-1+2SnSn-1=0,两边同除以SnSn-1,化为
-
=2,即可证明;
(2)由(1)可得
=2+2(n-1)=2n,Sn=
.可得bn=Sn•Sn+1=
=
(
-
).利用“裂项求和”即可得出.
| 1 |
| Sn |
| 1 |
| Sn-1 |
(2)由(1)可得
| 1 |
| Sn |
| 1 |
| 2n |
| 1 |
| 4n(n+1) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
解答:
(1)证明:当n≥2时,an=Sn-Sn-1,
∵满足an+2Sn•Sn-1=0(n≥2,且n∈N),
∴Sn-Sn-1+2SnSn-1=0,
化为
-
=2,
=
=2,
∴{
}是等差数列.
(2)解:由(1)可得
=2+2(n-1)=2n,
∴Sn=
.
∴bn=Sn•Sn+1=
=
(
-
).
∴数列{bn}的前n项和为Tn=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
∵满足an+2Sn•Sn-1=0(n≥2,且n∈N),
∴Sn-Sn-1+2SnSn-1=0,
化为
| 1 |
| Sn |
| 1 |
| Sn-1 |
| 1 |
| S1 |
| 1 |
| a1 |
∴{
| 1 |
| Sn |
(2)解:由(1)可得
| 1 |
| Sn |
∴Sn=
| 1 |
| 2n |
∴bn=Sn•Sn+1=
| 1 |
| 4n(n+1) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
∴数列{bn}的前n项和为Tn=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 4 |
| 1 |
| n+1 |
=
| n |
| 4(n+1) |
点评:本题考查了等差数列的通项公式、“裂项求和”方法、递推式的应用,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目