题目内容
设向量
,
满足|
|=|
|=1,
•
=-
,则|
+2
|= .
| a |
| b |
| a |
| b |
| a |
| b |
| 1 |
| 2 |
| a |
| b |
考点:平面向量数量积的性质及其运算律
专题:平面向量及应用
分析:根据平面向量的数量积,求出向量的模长即可.
解答:
解:∵向量
,
满足|
|=|
|=1,且
•
=-
,
∴(
+2
)2=
2+4
•
+4
2=1+4×(-
)+4=3,
∴|
+2
|=
.
故答案为:
.
| a |
| b |
| a |
| b |
| a |
| b |
| 1 |
| 2 |
∴(
| a |
| b |
| a |
| a |
| b |
| b |
| 1 |
| 2 |
∴|
| a |
| b |
| 3 |
故答案为:
| 3 |
点评:本题考查了平面向量的数量积的应用问题,解题时应灵活应用平面向量的数量积求模长,夹角以及判断垂直与平行,是基础题.
练习册系列答案
相关题目
如果二次函数y=5x2+mx+4在区间(-∞,-1]上是减函数,则m的取值范围是( )
| A、(-∞,-10] |
| B、(-∞,10] |
| C、[10,+∞) |
| D、[-10,+∞) |
如果函数f(x)=(
)|x|(-∞<x<+∞),那么函数f(x)是( )
| 1 |
| 2 |
| A、奇函数,且在(-∞,0)上是增函数 |
| B、偶函数,且在(-∞,0)上是减函数 |
| C、奇函数,且在(0,+∞)上是增函数 |
| D、偶函数,且在(0,+∞)上是减函数 |
函数y=3sin(3x+
)-3的最小正周期为( )
| π |
| 3 |
A、
| ||
B、
| ||
| C、3π | ||
D、
|
下列函数中为偶函数的是( )
| A、y=x2+1(x∈R) |
| B、y=(x+1)2(x∈R) |
| C、y=x2+1(x>0) |
| D、y=-x2+1(x>0) |
| A、圆的一部分 |
| B、椭圆的一部分 |
| C、双曲线的一部分 |
| D、抛物线的一部分 |
函数f(x)=7+ax-3(a>0,a≠1)的图象恒过定点P,则定点P的坐标是( )
| A、(3,3) |
| B、(3,2) |
| C、(3,8) |
| D、(3,7) |