题目内容
复数z=1+i3(i是虚数单位)的共轭复数所对应的点位于( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |
考点:复数的代数表示法及其几何意义
专题:数系的扩充和复数
分析:利用复数的运算法则、共轭复数的意义及其复数的几何意义即可得出.
解答:
解:∵复数z=1+i3=1-i,
∴其共轭复数是1+i,对应的点为(1,1),位于第一象限.
故选:A.
∴其共轭复数是1+i,对应的点为(1,1),位于第一象限.
故选:A.
点评:本题考查了复数的运算法则、共轭复数的意义及其复数的几何意义,属于基础题.
练习册系列答案
相关题目
已知函数y=f(x)在R上为偶函数,当x≥0时,f(x)=log3(x+1),若f(t)>f(2-t),则实数t的取值范围是( )
| A、(-∞,1) | ||
| B、(1,+∞) | ||
C、(
| ||
| D、(2,+∞) |
在△ABC中,若3cos2
+5cos2
=4,则tanC的最大值为( )
| A-B |
| 2 |
| C |
| 2 |
A、-
| ||||
B、-
| ||||
C、-
| ||||
D、-2
|
若复数z满足z(2-i)=5i(i为虚数单位),则z为( )
| A、-1+2i | B、-1-2i |
| C、1+2i | D、1-2i |
设变量x,y满足约束条件
,则目标函数z=3x-y的最小值为( )
|
| A、-8 | B、-6 | C、-4 | D、-2 |
已知双曲线C的方程是:
-
=1(m≠0),若双曲线的离心率e>
,则实数m的取值范围是( )
| x2 |
| 2m-m2 |
| y2 |
| m |
| 2 |
| A、1<m<2. |
| B、m<0 |
| C、m<0或m>1 |
| D、m<0或1<m<2. |