ÌâÄ¿ÄÚÈÝ

ÒÑÖªµÈ²îÊýÁÐ{an}Âú×ãa3=7£¬a5+a7=26£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Èôm=
2an
2n+2
£¬ÊýÁÐ{bn}Âú×ã¹ØÏµÊ½bn=
1£¬  n=1
bn-1+m£¬n¡Ý2
£¬ÇóÖ¤£ºÊýÁÐ{bn}µÄͨÏʽΪbn=2n-1£»
£¨3£©É裨2£©ÖеÄÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬¶ÔÈÎÒâµÄÕýÕûÊýn£¬£¨1-n£©•£¨Sn+n+2£©+£¨n+p£©•2n+1£¼2ºã³ÉÁ¢£¬ÇóʵÊýpµÄȡֵ·¶Î§£®
¿¼µã£ºÊýÁÐÓë²»µÈʽµÄ×ÛºÏ,µÈ²îÊýÁеÄÐÔÖÊ
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ,²»µÈʽµÄ½â·¨¼°Ó¦ÓÃ
·ÖÎö£º£¨1£©ÓɵȲîÊýÁÐÓÐͨÏʽ£¬µÃµ½Ê×ÏîÓ빫²îµÄ·½³Ì×飬µÃ³öÊ×ÏîÓ빫²îµÄÖµ£¬µÃµ½Í¨Ïʽ£»£¨2£©ÒÑÖªÊýÁеĵÝÍÆ¹«Ê½£¬Óɵþ¼Ó·¨£¬µÃµ½ÊýÁеÄͨÏʽ£»£¨3£©½«ÊýÁÐÇóºÍµÃµ½Ç°nÏîºÍºó£¬½«Ìõ¼þ±äÐκ󣬵õ½¹ØÓÚ²ÎÊýpµÄ¹ØÏµÊ½£¬ÕâÊÇÒ»¸öºã³ÉÁ¢ÎÊÌ⣬ͨ¹ý×îÖµµÄÑо¿£¬µÃµ½±¾Ìâ½áÂÛ£®
½â´ð£º ½â£º£¨1£©ÉèµÈ²îÊýÁÐanµÄ¹«²îΪd£¬
ÓÉÒÑÖª£¬ÓÐ
a1+2d=7
2a1+10d=26
½âµÃ
a1=3
d=2

ËùÒÔan=3+2£¨n-1£©=2n+1£¬
¼´²îÊýÁÐanµÄͨÏʽΪan=2n+1£¬n¡ÊN*£®
£¨2£©ÒòΪm=
2an
2n+2
=
22n+1
2n+2
=2n-1
£¬
ËùÒÔ£¬µ±n¡Ý2ʱ£¬bn=bn-1+2n-1£®
Ö¤·¨Ò»£¨Êýѧ¹éÄÉ·¨£©£º
¢Ùµ±n=1ʱ£¬b1=1£¬½áÂÛ³ÉÁ¢£»
¢Ú¼ÙÉèµ±n=kʱ½áÂÛ³ÉÁ¢£¬¼´bk=2k-1£¬
ÄÇôµ±n=k+1ʱ£¬bk+1=bk+2k=2k-1+2k=2k+1-1£¬
¼´n=k+1ʱ£¬½áÂÛÒ²³ÉÁ¢£® 
ÓÉ¢Ù£¬¢ÚµÃ£¬µ±n¡ÊN*ʱ£¬bn=2n-1³ÉÁ¢£®
Ö¤·¨¶þ£ºµ±n¡Ý2ʱ£¬bn-bn-1=2n-1£¬
ËùÒÔ
b2-b1=2
b3-b2=22
¡­
bn-bn-1=2n-1

½«Õân-1¸öʽ×ÓÏà¼Ó£¬µÃbn-b1=2+22+23+¡­+2n-1£¬
¼´bn=1+2+22+¡­+2n-1=
1-2n
1-2
=2n-1
£®
µ±n=1ʱ£¬b1=1Ò²Âú×ãÉÏʽ£®
ËùÒÔÊýÁÐ{bn}µÄͨÏʽΪbn=2n-1£®
£¨3£©ÓÉ£¨2£©bn=2n-1£¬ËùÒÔSn=(2+22+23+¡­+2n)-n=2n+1-(n+2)£¬
¡àÔ­²»µÈʽ±äΪ£¨1-n£©2n+1+£¨n+p£©•2n+1£¼2£¬¼´p•2n+1£¼2-2n+1£¬
¡àp£¼
1
2n
-1
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬
¡ßnΪÈÎÒâµÄÕýÕûÊý£¬
¡àp¡Ü-1£®
¡àmµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬-1]£®
µãÆÀ£º±¾Ì⿼²éµÄÊÇÊýÁкͲ»µÈʽµÄ֪ʶ£¬Éæ¼°µ½µÈ²îÊýÁеÄͨÏʽ¡¢Ç°nÏîºÍ¹«Ê½¡¢µþ¼Ó·¨ÇóͨÏÒÔ¼°²»µÈ¹ØÏµÊ½£®±¾ÌâÓÐÒ»¶¨µÄ˼άÁ¿£¬ÔËËãÁ¿½Ï´ó£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø