题目内容
已知数列{an}满足a1=3,an+1-3an=3n(n∈N*),数列{bn}满足bn=
(Ⅰ)求证:数列{bn}是等差数列.
(Ⅱ)设Sn=
+
+
+…+
,求满足不等式
<
<
的所有正整数n的值.
| an |
| 3n |
(Ⅰ)求证:数列{bn}是等差数列.
(Ⅱ)设Sn=
| a1 |
| 3 |
| a2 |
| 4 |
| a3 |
| 5 |
| an |
| n+2 |
| 1 |
| 128 |
| Sn |
| S2n |
| 1 |
| 4 |
考点:数列的求和,等差关系的确定,数列与不等式的综合
专题:计算题
分析:(I)由已知求出bn+1-bn=
-
=
=
=
满足等差数列的定义.
(II)由题意可先求an,进一步求出
=3n-1利用等比数列的前n项和公式求出Sn 求出满足不等式
<
<
的所有正整数n的值.
| an+1 |
| 3n+1 |
| an |
| 3n |
| an+1-3an |
| 3n+1 |
| 3n |
| 3n+1 |
| 1 |
| 3 |
(II)由题意可先求an,进一步求出
| an |
| n+2 |
| 1 |
| 128 |
| Sn |
| S2n |
| 1 |
| 4 |
解答:
(I)证明:∵bn=
,an+1-3an=3n(n∈N*),
∴bn+1-bn=
-
=
=
=
∴数列{bn}是首项为1,公差为
的等差数列.
(II)bn=1+
(n-1)=
,
∵an=3nbn=(n+2)•3n-1,
∴
=3n-1,
∴Sn=
+
+
+…+
=1+3+32+33…+3n-1
=
=
,
∴S2n=
,
∴
=
,
<
<
∴
<
<
解得1<n<5
∴n=2,3,4
| an |
| 3n |
∴bn+1-bn=
| an+1 |
| 3n+1 |
| an |
| 3n |
=
| an+1-3an |
| 3n+1 |
=
| 3n |
| 3n+1 |
| 1 |
| 3 |
∴数列{bn}是首项为1,公差为
| 1 |
| 3 |
(II)bn=1+
| 1 |
| 3 |
| n+2 |
| 3 |
∵an=3nbn=(n+2)•3n-1,
∴
| an |
| n+2 |
∴Sn=
| a1 |
| 3 |
| a2 |
| 4 |
| a3 |
| 5 |
| an |
| n+2 |
=1+3+32+33…+3n-1
=
| 1-3n |
| 1-3 |
| 3n-1 |
| 2 |
∴S2n=
| 32n-1 |
| 2 |
∴
| Sn |
| S2n |
| 1 |
| 3n+1 |
| 1 |
| 128 |
| Sn |
| S2n |
| 1 |
| 4 |
∴
| 1 |
| 128 |
| 1 |
| 3n+1 |
| 1 |
| 4 |
解得1<n<5
∴n=2,3,4
点评:本题主要考查了利用数列的递推公式证明等差数列,及等差数列的通项公式的应用,数列求和方法的应用.
练习册系列答案
相关题目
若全集U={1,2,3,4,5,6},M={1,4},N={2,3},则集合{5,6}等于( )
| A、M∪N |
| B、M∩N |
| C、(∁UM)∪(∁UN) |
| D、(∁UM)∩(∁UN) |