题目内容

4.(1)设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为两个不共线的向量,$\overrightarrow{a}$=-$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=4$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{c}$=-3$\overrightarrow{{e}_{1}}$+12$\overrightarrow{{e}_{2}}$,试用$\overrightarrow{b}$,$\overrightarrow{c}$为基底表示向量$\overrightarrow{a}$;
(2)已知向量$\overrightarrow{m}$=(3,2),$\overrightarrow{n}$=(-1,2),$\overrightarrow{p}$=(4,1),当k为何值时,($\overrightarrow{m}$+k$\overrightarrow{p}$)∥(2$\overrightarrow{n}$-$\overrightarrow{m}$)?平行时它们是同向还是反向?

分析 (1)根据向量的共线定理即可求出,
(2)根向量的坐标运算和向量的平行即可求出

解答 解:(1)设$\overrightarrow{a}$=λ$\overrightarrow{b}$+μ$\overrightarrow{c}$,
∴-$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$=λ(4$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$)+μ(-3$\overrightarrow{{e}_{1}}$+12$\overrightarrow{{e}_{2}}$),
∴$\left\{\begin{array}{l}{4λ-3μ=-1}\\{2λ+12μ=3}\end{array}\right.$,
解得λ=-$\frac{1}{18}$,μ=$\frac{7}{27}$,
∴$\overrightarrow{a}$=-$\frac{1}{18}$$\overrightarrow{b}$+$\frac{7}{27}$$\overrightarrow{c}$,
(2)∵向量$\overrightarrow{m}$=(3,2),$\overrightarrow{n}$=(-1,2),$\overrightarrow{p}$=(4,1),
∴$\overrightarrow{m}$+k$\overrightarrow{p}$=(3,2)+k(4,1)=(3+4k,2+k)
2$\overrightarrow{n}$-$\overrightarrow{m}$=2(-1,2)-(3,2)=(-5,2)
∵($\overrightarrow{m}$+k$\overrightarrow{p}$)∥(2$\overrightarrow{n}$-$\overrightarrow{m}$),
∴2(3+4k)=-5(2+k),
解得k=-$\frac{16}{13}$,
此时$\overrightarrow{m}$+k$\overrightarrow{p}$=(-$\frac{25}{13}$,$\frac{10}{13}$)=$\frac{5}{13}$(-5,2)=$\frac{5}{13}$(2$\overrightarrow{n}$-$\overrightarrow{m}$),
故$\overrightarrow{m}$+k$\overrightarrow{p}$,2$\overrightarrow{n}$-$\overrightarrow{m}$同向.

点评 本题考查了向量的坐标运算以及向量的共线定理,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网