题目内容

14.如图,四棱锥P-ABCD中,平面PAC⊥平面ABCD,AC=2BC=2CD=4,∠ACB=∠ACD=60°.
(1)证明:CP⊥BD;
(2)若AP=PC=2$\sqrt{2}$,求二面角A-BP-C的余弦值.

分析 (1)推导出AC⊥BD,由平面PAC⊥底面ABCD,得BD⊥平面PAC,由此能证明CP⊥BD;
(2)作PO⊥AC于点O,则PO⊥底面ABCD,以O为坐标原点,平行于DB的直线为x轴,OC所在直线为y轴,OP所在直线为z轴建立空间直角坐标系,求出所用点的坐标,求得平面PAB与平面PBC的一个法向量,由两法向量所成角的余弦值可得二面角A-BP-C的余弦值.

解答 (1)证明:∵BC=CD,即△BCD为等腰三角形,
又AC平分∠BCD,故AC⊥BD,
∵平面PAC⊥底面ABCD,平面PAC∩底面ABCD=AC,
∴BD⊥平面PAC,
∵CP?平面PAC,∴CP⊥BD;
(2)解:如图,记BD交AC于点E,作PO⊥AC于点O,
则PO⊥底面ABCD,
∵AP=PC=2$\sqrt{2}$,AC=4,∴∠APC=90°,PO=2,
则EC=CD•cos60°=1,ED=CD•sin60°=$\sqrt{3}$,
以O为坐标原点,平行于DB的直线为x轴,OC所在直线为y轴,OP所在直线为z轴建立空间直角坐标系,
则A(0,-2,0),B($\sqrt{3}$,1,0),C(0,2,0),P(0,0,2),
∴$\overrightarrow{PA}=(0,-2,-2),\overrightarrow{PB}=(\sqrt{3},1,-2)$,$\overrightarrow{PC}=(0,2,-2)$.
设平面PAB的一个法向量为$\overrightarrow{m}=(x,y,z)$,则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PB}=\sqrt{3}x+y-2z=0}\\{\overrightarrow{m}•\overrightarrow{PA}=-2y-2z=0}\end{array}\right.$,取z=1,则$\overrightarrow{m}=(\sqrt{3},-1,1)$;
设平面PBC的一个法向量为$\overrightarrow{n}=(x,y,z)$,则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=\sqrt{3}x+y-2z=0}\\{\overrightarrow{n}•\overrightarrow{PC}=2y-2z=0}\end{array}\right.$,取z=1,则$\overrightarrow{n}=(\frac{\sqrt{3}}{3},1,1)$.
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{\sqrt{5}×\sqrt{\frac{7}{3}}}$=$\frac{\sqrt{105}}{35}$.
∴二面角A-BP-C的余弦值为$-\frac{\sqrt{105}}{35}$.

点评 本题考查平面与平面垂直的性质,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网