题目内容

6.已知函数f(x)=|x-a|-|x-4|,a∈R.
(Ⅰ)当a=-1时,求不等式f(x)≥4的解集;
(Ⅱ)若?x∈R,|f(x)|≤2恒成立,求a的取值范围.

分析 (Ⅰ)通过讨论x的范围求出不等式的解集即可;(Ⅱ)问题转化为转化为|f(x)|max≤2,通过讨论a的范围得到关于a的不等式,解出即可.

解答 解:(Ⅰ) 由|x+1|-|x-4|≥4得:
①$\left\{\begin{array}{l}x<-1\\-5≥4\end{array}\right.⇒∅$或  ②$\left\{\begin{array}{l}-1≤x≤4\\ 2x-3≥4\end{array}\right.⇒\left\{{\left.x\right|\frac{7}{2}≤x≤4}\right\}$或  ③$\left\{\begin{array}{l}x>4\\ 5≥4\end{array}\right.⇒\left\{{x\left|{x>4}\right.}\right\}$,
综上所述f(x)≥4的解集为$[{\frac{7}{2},+∞})$.
(Ⅱ)?x∈R,|f(x)|≤2恒成立,可转化为|f(x)|max≤2
分类讨论
①当a=4时,f(x)=0≤2显然恒成立.
②当a<4时,f(x)=$\left\{\begin{array}{l}{a-4,(x<a)}\\{2x-a-4,(a≤x≤4)}\\{-a+4,(x>4)}\end{array}\right.$,
③当a>4时,f(x)=$\left\{\begin{array}{l}{a-4,(x<4)}\\{-2x+a+4,(4≤x≤a)}\\{-a+4,(x>a)}\end{array}\right.$,
由②③知,|f(x)|max=|a-4|≤2,
解得2≤a≤6且a≠4,
综上所述:a的取值范围为[2,6].

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网