ÌâÄ¿ÄÚÈÝ
4£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1-t}\\{y=t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔÚÒÔ×ø±êÔµãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨3+sin2¦È£©=12£®£¨1£©ÇóÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬½»xÖáÓÚµãN£¬µãAÔÚxÖáµÄÉÏ·½£¬MΪÏÒABµÄÖе㣬Çó|AN|-|BN|+|MN|+|AN|•|BN|£®
·ÖÎö £¨1£©ÀûÓÃÈýÖÖ·½³ÌµÄת»¯·½·¨£¬¼´¿ÉÇóÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}m}\\{y=\frac{\sqrt{2}}{2}m}\end{array}\right.$£¨mΪ²ÎÊý£©£¬´úÈëÍÖÔ²·½³Ì£¬ÕûÀí¿ÉµÃ7m2+6$\sqrt{2}$m-18=0£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒ壬¿ÉµÃ½áÂÛ£®
½â´ð ½â£º£¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1-t}\\{y=t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÆÕͨ·½³ÌΪx+y+1=0£»
ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨3+sin2¦È£©=12£¬Ö±½Ç×ø±ê·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£»
£¨2£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}m}\\{y=\frac{\sqrt{2}}{2}m}\end{array}\right.$£¨mΪ²ÎÊý£©£¬´úÈëÍÖÔ²·½³Ì£¬ÕûÀí¿ÉµÃ7m2+6$\sqrt{2}$m-18=0£¬
ÉèA£¬B¶ÔÓ¦µÄ²ÎÊýΪm1£¬m2£¬Ôòm1+m2=-$\frac{6\sqrt{2}}{7}$£¬m1m2=-$\frac{18}{7}$£¬
¡àM¶ÔÓ¦µÄ²ÎÊýΪ-$\frac{3\sqrt{2}}{7}$£¬¡àM£¨-$\frac{4}{7}$£¬$\frac{3}{7}$£©£¬
¡ßN£¨-1£¬0£©£¬¡à|MN|=$\frac{3\sqrt{2}}{7}$
¡à|AN|-|BN|+|MN|+|AN|•|BN|=$\sqrt{\frac{72}{49}+\frac{72}{7}}$+$\frac{3\sqrt{2}}{7}$+$\frac{18}{7}$=6+$\frac{3\sqrt{2}}{7}$£®
µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄת»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
| A£® | a£¾3£¿ | B£® | a¡Ý3£¿ | C£® | a¡Ü3£¿ | D£® | a£¼3£¿ |
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |