题目内容
15.某人午觉醒来,打开收音机想听电台整点报时,则他等待不多于10分钟的概率是( )| A. | $\frac{1}{6}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
分析 由电台整点报时的时刻是任意的,知这是一个几何概型,电台整点报时知事件总数包含的时间长度是60,而他等待的时间不多于10分钟的事件包含的时间长度是10,两值作比得答案.
解答 解:∵电台整点报时,
∴事件总数包含的时间长度是60,
∵满足他等待的时间不多于10分钟的事件包含的时间长度是10,
由几何概型公式得到P=$\frac{10}{60}=\frac{1}{6}$,
故选:A.
点评 本题主要考查几何概型,明确测度比是时间长度比是关键,属于中档题.
练习册系列答案
相关题目
5.有7个灯泡排成一排,现要求至少点亮其中的3个灯泡,且相邻的灯泡不能同时点亮,则不同的点亮方法有( )
| A. | 11种 | B. | 21种 | C. | 120种 | D. | 126种 |
6.在△ABC中,A,B,C所对的边分别为a,b,c,若1+$\frac{tanA}{tanB}$+$\frac{2c}{b}$=0,则A=( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{2π}{3}$ |
3.已知p:“?x>0,有lnx+1≤x<ex成立”,q:“十进制数2017转化为八进制数为1473(8)”,则下列命题为真的是( )
| A. | p∧q | B. | (¬p)∨q | C. | p∨(¬q) | D. | (¬p)∧(¬q) |
10.如果a>b,则下列不等式正确的是( )
| A. | $\frac{1}{a}>\frac{1}{b}$ | B. | 2a>2b | C. | |a|>|b| | D. | a2>b2 |
20.下列求导运算正确的是( )
| A. | (3x)′=3xlog3e | B. | (x2cosx)′=-2xsinx | C. | (x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$ | D. | (log2x)′=$\frac{1}{xln2}$ |
4.设函数$f(x)=3sin(ωx+\frac{π}{6}),ω>0,x∈R$的最小正周期为$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)利用“五点作图法”,画出f(x)在长度为一个周期的闭区间上的简图;

(3)已知$f(\frac{α}{4}+\frac{π}{12})=\frac{9}{5}$,求cosα的值.
(1)求f(x)的解析式;
(2)利用“五点作图法”,画出f(x)在长度为一个周期的闭区间上的简图;
| ωx+$\frac{π}{6}$ | |||||
| x | |||||
| f(x) |
(3)已知$f(\frac{α}{4}+\frac{π}{12})=\frac{9}{5}$,求cosα的值.
5.在区间[0,2]上分别任取两个数m,n,若向量$\overrightarrow{a}$=(m,n),$\overrightarrow{b}$=(1,1),则|$\overrightarrow{a}-\overrightarrow{b}$|≤1的概率是( )
| A. | $\frac{π}{2}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{8}$ |