题目内容
3.已知p:“?x>0,有lnx+1≤x<ex成立”,q:“十进制数2017转化为八进制数为1473(8)”,则下列命题为真的是( )| A. | p∧q | B. | (¬p)∨q | C. | p∨(¬q) | D. | (¬p)∧(¬q) |
分析 p:令f(x)=x-lnx(x>0),则f′(x)=$\frac{x-1}{x}$,可知:当x=1时,函数f(x)取得极小值即最小值,f(x)≥f(1)=1>0,可得x>lnx.令g(x)=ex-x,(x>0),同理可得ex>x.即可判断出真假.
q:如图所示,“十进制数2017转化为八进制数为3741(8)”,即可判断出真假.再利用复合命题真假的判定方法即可得出.
解答 解:p:令f(x)=x-lnx(x>0),则f′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$,可知:当x=1时,函数f(x)取得极小值即最小值,f(x)≥f(1)=1>0,∴x>lnx.令g(x)=ex-x,(x>0),同理可得ex>x.因此“?x>0,有lnx+1≤x<ex成立”,是真命题.
q:
如图所示,“十进制数2017转化为八进制数为3741(8)”,因此为假命题.
则下列命题为真的是p∨(¬q).
故选:C.
点评 本题考查了利用导数研究函数的单调性极值与最值、进位制、复合命题真假的判定方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
14.y=sin($\frac{π}{3}$-2x)单调增区间为( )
| A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5}{12}$π],(k∈Z) | B. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],(k∈Z) | ||
| C. | [kπ+$\frac{5}{12}$π,kπ+$\frac{11}{12}$π],(k∈Z) | D. | [kπ+$\frac{π}{6}$,kπ+$\frac{2}{3}$π],(k∈Z) |
18.已知sin($\frac{3π}{2}$+α)=$\frac{1}{3}$,则cos(π-2α)的值等于( )
| A. | $\frac{7}{9}$ | B. | -$\frac{7}{9}$ | C. | $\frac{2}{9}$ | D. | -$\frac{2}{3}$ |
8.若不等式a+cos2x<5-4sinx+$\sqrt{5a-4}$对一切x∈R恒成立,则实数a的取值范围是( )
| A. | (1,8) | B. | ($\frac{4}{5}$,8] | C. | [$\frac{4}{5}$,8) | D. | [$\frac{4}{5}$,2)∪(8,+∞) |
15.某人午觉醒来,打开收音机想听电台整点报时,则他等待不多于10分钟的概率是( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |