ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖª¼«×ø±êϵµÄ¼«µãÓëÖ±½Ç×ø±êϵµÄÔµãÖØºÏ£¬¼«ÖáÓëÖ±½Ç×ø±êϵµÄxÖáµÄÕý°ëÖáÖØºÏ£¬ÇÒÁ½¸ö×ø±êϵµÄµ¥Î»³¤¶ÈÏàͬ£¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+tcosa}\\{y=1+tsina}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£®£¨¢ñ£©ÈôÖ±ÏßlµÄбÂÊΪ-1£¬ÇóÖ±ÏßlÓëÇúÏßC½»µãµÄ¼«×ø±ê£¨¦Ñ¡Ý0£¬0¡Ü¦È£¼2¦Ð£©£»
£¨¢ò£©ÈôÖ±ÏßlÓëÇúÏßCÏཻÏÒ³¤Îª$2\sqrt{3}$£¬ÇóÖ±ÏßlµÄ²ÎÊý·½³Ì£®
·ÖÎö £¨¢ñ£©Çó³öÖ±ÏßlÓëÇúÏßCµÄÆÕͨ·½³Ì£¬ÁªÁ¢¿ÉµÃÖ±½Ç×ø±ê·½³Ì£¬¼´¿ÉÇóÖ±ÏßlÓëÇúÏßC½»µãµÄ¼«×ø±ê£¨¦Ñ¡Ý0£¬0¡Ü¦È£¼2¦Ð£©£»
£¨¢ò£©ÈôÖ±ÏßlÓëÇúÏßCÏཻÏÒ³¤Îª$2\sqrt{3}$£¬C£º£¨x-2£©2+y2=4£¬$d=\sqrt{{2^2}-{{£¨\frac{{2\sqrt{3}}}{2}£©}^2}}=1$£¬¼´¿ÉÇóÖ±ÏßlµÄ²ÎÊý·½³Ì£®
½â´ð ½â£º£¨¢ñ£©Ö±ÏßlµÄ·½³Ì£ºy-1=-1£¨x+1£©£¬¼´y=-x£¬
C£º¦Ñ=4cos ¦È£¬¼´x2+y2-4x=0£¬
ÁªÁ¢·½³ÌµÃ2x2-4x=0£¬
¡àA£¨0£¬0£©£¬B£¨2£¬-2£©£»¼«×ø±êΪA£¨0£¬0£©£¬B$£¨2\sqrt{2}£¬\frac{7¦Ð}{4}£©$£®
£¨¢ò£© C£º£¨x-2£©2+y2=4£¬$d=\sqrt{{2^2}-{{£¨\frac{{2\sqrt{3}}}{2}£©}^2}}=1$£¬
ÉèÖ±ÏßlµÄ·½³ÌΪkx-y+k+1=0£¬
¡à$\frac{{|{2k+k+1}|}}{{\sqrt{{k^2}+1}}}=1$£¬¡àk=0»òk=$-\frac{3}{4}$£®
¡àl£º$\left\{\begin{array}{l}{x=-1+t}\\{y=1}\end{array}\right.$£¨tΪ²ÎÊý£©»ò$\left\{\begin{array}{l}{x=-1-\frac{4}{5}t}\\{y=1+\frac{3}{5}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
µãÆÀ ±¾Ì⿼²é·½³ÌµÄ»¥»¯£¬¿¼²éÖ±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | n¡Ü5 | B£® | n¡Ü6 | C£® | n¡Ü7 | D£® | n¡Ü8 |
| A£® | {2£¬3£¬4£¬5} | B£® | {-1£¬0} | C£® | {-1£¬0£¬1£¬2} | D£® | { 2£¬3£¬4} |
| A£® | 53 | B£® | 43 | C£® | 51 | D£® | 67 |
| A£® | 0 | B£® | 1 | C£® | 2 | D£® | 3 |