题目内容

3.一块长为a、宽为$\frac{a}{2}$的长方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒.
(Ⅰ)试把方盒的容积V表示为x的函数;
(Ⅱ)试求方盒容积V的最大值.

分析 (Ⅰ)分别求出方盒的长、宽、高,求出方盒的体积即可;
(Ⅱ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值即可.

解答 解:(Ⅰ)依题意,折成无盖方盒的长为a-2x、宽为$\frac{a}{2}-2x$、高为x,
故体积$y=V(x)=(a-2x)(\frac{a}{2}-2x)x=4{x^3}-3a{x^2}+\frac{a^2}{2}x,(0<x<\frac{a}{4})$,其中常数a>0;(5分)
(Ⅱ)由$y'=12{x^2}-6ax+\frac{a^2}{2}=0$(6分)得$x=\frac{{3±\sqrt{3}}}{12}a$,(7分)
在定义域内列极值分布表(10分)

x(0,$\frac{{3-\sqrt{3}}}{12}a$)$\frac{{3-\sqrt{3}}}{12}a$$(\frac{{3-\sqrt{3}}}{12}a,\frac{a}{4})$
f’(x)+0-
f(x)单调增极大值单调减
∴$V{(x)_{max}}=f(\frac{{3-\sqrt{3}}}{12}a)=\frac{{\sqrt{3}}}{72}{a^3}$.(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网