题目内容
12.计算sin21°cos9°+sin69°sin9°的结果是( )| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
分析 首先对式子的角度统一,然后逆用三角函数公式求值.
解答 解:原式=sin21°cos9°+cos21°sin9°=sin(21°+9°)=sin30°=$\frac{1}{2}$;
故选:B.
点评 本题考查了三角函数式的化简与求值;关键是逆用三角函数两角和的正弦公式.
练习册系列答案
相关题目
3.某学校有2500名学生,其中高一1000人,高二900人,高三600人,为了了解学生的身体健康状况,采用分层抽样的方法,若从本校学生中抽取100人,从高一和高三抽取样本数分别为a,b,且直线ax+by+8=0与以A(1,-1)为圆心的圆交于B,C两点,且∠BAC=120°,则圆C的方程为( )
| A. | (x-1)2+(y+1)2=1 | B. | (x-1)2+(y+1)2=2 | C. | (x-1)2+(y+1)2=$\frac{18}{17}$ | D. | (x-1)2+(y+1)2=$\frac{12}{15}$ |
20.
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
表中${w_i}=\sqrt{x_i}$,$\overline{w}=\frac{1}{8}\sum_{i=1}^8{w_i}$.
(1)根据散点图判断,y=a+bx与$y=c+d\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(2)的结果要求:年宣传费x为何值时,年利润最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn)其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\hat β=\frac{{\sum_{i=1}^n{({{u_i}-\bar u})({{v_i}-\bar v})}}}{{\sum_{i=1}^n{{{({{u_i}-\bar u})}^2}}}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.
| $\overline{x}$ | $\overrightarrow{y}$ | $\overline{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{8}$ (xi-$\overrightarrow{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
(1)根据散点图判断,y=a+bx与$y=c+d\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(2)的结果要求:年宣传费x为何值时,年利润最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn)其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\hat β=\frac{{\sum_{i=1}^n{({{u_i}-\bar u})({{v_i}-\bar v})}}}{{\sum_{i=1}^n{{{({{u_i}-\bar u})}^2}}}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.