题目内容

20.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
 $\overline{x}$ $\overrightarrow{y}$ $\overline{w}$ $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 $\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$ (xi-$\overrightarrow{x}$)(yi-$\overline{y}$) $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
 46.6 563 6.8 289.8 1.6 1469 108.8
表中${w_i}=\sqrt{x_i}$,$\overline{w}=\frac{1}{8}\sum_{i=1}^8{w_i}$.
(1)根据散点图判断,y=a+bx与$y=c+d\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(2)的结果要求:年宣传费x为何值时,年利润最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn)其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\hat β=\frac{{\sum_{i=1}^n{({{u_i}-\bar u})({{v_i}-\bar v})}}}{{\sum_{i=1}^n{{{({{u_i}-\bar u})}^2}}}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

分析 (1)根据散点图的意义,即可判断出结论;
(2)先建立中间量w=$\sqrt{x}$,建立y关于w的线性回归方程,
根据公式求出w,问题得以解决;
(3)求出预报值得方程,根据函数的性质,
即可求出年利润最大值对应的x值.

解答 解:(1)根据散点图判断,
$y=c+d\sqrt{x}$更适宜作为年销售量y关于年宣传费x的回归方程类型;
(2)令$w=\sqrt{x}$,y=c+dw,
由表可知:$d=\frac{108.8}{1.6}=68$,
$c=\bar y-d\overline{w}=100.6$;
所以y关于x的回归方程为:
$y=100.6+68\sqrt{x}$;
(3)由(2)可知:
年利润z=0.2y-x
=$0.2({100.6+68\sqrt{x}})-x$
=$-x+13.6\sqrt{x}+20.12$;
所以当$\sqrt{x}=\frac{13.6}{2}=6.8$,
即x=46.24时,年利润z最大.
故年宣传费为46.24千元时,年利润最大.

点评 本题主要考查了线性回归方程和散点图的应用问题,也考查了计算能力,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网