题目内容
BC交于点D.求证:
(1)∠ADE=∠DAC
(2)ED2=EC•EB.
考点:与圆有关的比例线段
专题:选作题,立体几何
分析:(1)由弦切角定理,结合三角形的外角证出∠ADE=∠DAE;
(2)由(1)得EA=ED,再由切割线定理,得EA2=EC•EB,结合EA=ED,即可证出ED2=EC•EB.
(2)由(1)得EA=ED,再由切割线定理,得EA2=EC•EB,结合EA=ED,即可证出ED2=EC•EB.
解答:
证明:(1)∵AE是圆的切线,∴∠ABC=∠CAE.
∵AD是∠BAC的平分线,∴∠BAD=∠CAD,
从而∠ABC+∠BAD=∠CAE+∠CAD.
∵∠ADE=∠ABC+∠BAD,∠DAE=∠CAD+∠CAE,
∴∠ADE=∠DAE;
(2)由(1)得EA=ED.
∵AE是圆的切线,∴由切割线定理,得EA2=EC•EB.
结合EA=ED,得ED2=EC•EB.
∵AD是∠BAC的平分线,∴∠BAD=∠CAD,
从而∠ABC+∠BAD=∠CAE+∠CAD.
∵∠ADE=∠ABC+∠BAD,∠DAE=∠CAD+∠CAE,
∴∠ADE=∠DAE;
(2)由(1)得EA=ED.
∵AE是圆的切线,∴由切割线定理,得EA2=EC•EB.
结合EA=ED,得ED2=EC•EB.
点评:熟练掌握三角形的外角定理、角平分线的性质、切割线定理等是解题的关键.
练习册系列答案
相关题目