题目内容
6.已知$\overrightarrow a=(-3,2,5)$,$\overrightarrow b=(1,x,-1)$,且$\overrightarrow a•\overrightarrow b=4$,则x的值是( )| A. | 6 | B. | 5 | C. | 4 | D. | 3 |
分析 根据题意,由向量$\overrightarrow{a}$、$\overrightarrow{b}$的坐标,结合空间向量的数量积坐标计算公式可得$\overrightarrow{a}$•$\overrightarrow{b}$=(-3)×1+2x+5×(-1)=2x-8=4,计算可得x的值,即可得答案.
解答 解:根据题意,$\overrightarrow a=(-3,2,5)$,$\overrightarrow b=(1,x,-1)$,
若$\overrightarrow a•\overrightarrow b=4$,则有$\overrightarrow{a}$•$\overrightarrow{b}$=(-3)×1+2x+5×(-1)=2x-8=4,
解可得x=6,
故选:A.
点评 本题考查空间向量数量积的运算,关键是掌握空间向量数量积的计算公式.
练习册系列答案
相关题目
17.某科研小组对一种可冷冻食物保质期研究得出,保存温度x与保质期天数y的有关数据如表:
根据以上数据,用线性回归的方法,求得保质期天数y与保存温度x之间线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$的系数$\widehat{b}$=-2.5,则预测温度为-7℃时该食物保质期为( )
| 温度/℃ | -2 | -3 | -5 | -6 |
| 保质期/天数 | 20 | 24 | 27 | 31 |
| A. | 32天 | B. | 33天 | C. | 34天 | D. | 35天 |
1.
如图是从甲、乙两品种的棉花中各抽测了10根棉花的纤维长度(单位:mm)所得数据如图茎叶图,记甲、乙两品种棉花的纤维长度的平均值分别为${\overline x_甲}$与${\overline x_乙}$,标准差分别为s甲与s乙,则下列说法不正确的是( )
| A. | ${\overline x_甲}<{\overline x_乙}$ | B. | s甲>s乙 | ||
| C. | 乙棉花的中位数为325.5mm | D. | 甲棉花的众数为322mm |
11.近年来我国电子商务行业迎来篷勃发展的新机遇,2016年双11期间,某购物平台的销售业绩高达一千多亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(Ⅰ)请完成如下列联表;
(Ⅱ)是否可以在犯错误的概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(Ⅲ)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(Ⅰ)请完成如下列联表;
| 对服务好评 | 对服务不满意 | 合计 | |
| 对 商品 好评 | |||
| 对商品不满意 | |||
| 合 计 |
(Ⅲ)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
18.设函数f(x)=log2x+ax+b(a>0),若存在实数b,使得对任意的x∈[t,t+2](t>0)都有|f(x)|≤1+a,则t的最小值是( )
| A. | 2 | B. | 1 | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
2.P是双曲线C:x2-y2=2左支上一点,直线l是双曲线C的一条渐近线,P在l上的射影为Q,F2是双曲线C的右焦点,则|PF2|+|PQ|的最小值为( )
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $3\sqrt{2}$ | D. | $2+\frac{{\sqrt{2}}}{2}$ |