ÌâÄ¿ÄÚÈÝ
11£®½üÄêÀ´ÎÒ¹úµç×ÓÉÌÎñÐÐÒµÓÀ´Åñ²ª·¢Õ¹µÄлúÓö£¬2016ÄêË«11ÆÚ¼ä£¬Ä³¹ºÎïÆ½Ì¨µÄÏúÊÛÒµ¼¨¸ß´ïһǧ¶àÒÚÈËÃñ±Ò£®Óë´Ëͬʱ£¬Ïà¹Ø¹ÜÀí²¿ÃÅÍÆ³öÁËÕë¶ÔµçÉ̵ÄÉÌÆ·ºÍ·þÎñµÄÆÀ¼ÛÌåϵ£®ÏÖ´ÓÆÀ¼ÛϵͳÖÐÑ¡³ö200´Î³É¹¦½»Ò×£¬²¢¶ÔÆäÆÀ¼Û½øÐÐͳ¼Æ£¬¶ÔÉÌÆ·µÄºÃÆÀÂÊΪ0.6£¬¶Ô·þÎñµÄºÃÆÀÂÊΪ0.75£¬ÆäÖжÔÉÌÆ·ºÍ·þÎñ¶¼×ö³öºÃÆÀµÄ½»Ò×Ϊ80´Î£®£¨¢ñ£©ÇëÍê³ÉÈçÏÂÁÐÁª±í£»
| ¶Ô·þÎñºÃÆÀ | ¶Ô·þÎñ²»ÂúÒâ | ºÏ¼Æ | |
| ¶Ô ÉÌÆ· ºÃÆÀ | |||
| ¶ÔÉÌÆ·²»ÂúÒâ | |||
| ºÏ ¼Æ |
£¨¢ó£©ÈôÕë¶ÔÉÌÆ·µÄºÃÆÀÂÊ£¬²ÉÓ÷ֲã³éÑùµÄ·½Ê½´ÓÕâ200´Î½»Ò×ÖÐÈ¡³ö5´Î½»Ò×£¬²¢´ÓÖÐÑ¡ÔñÁ½´Î½»Ò×½øÐпͻ§»Ø·Ã£¬ÇóÖ»ÓÐÒ»´ÎºÃÆÀµÄ¸ÅÂÊ£®
| P£¨K2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
·ÖÎö £¨¢ñ£©ÓÉÌâÒâÌîд2¡Á2ÁÐÁª±í¼´¿É£»
£¨¢ò£©¸ù¾Ý±íÖÐÊý¾Ý¼ÆËã¹Û²âÖµ£¬¶ÔÕÕÁÙ½çÖµ¼´¿ÉµÃ³ö½áÂÛ£»
£¨¢ó£©ÓÃÁоٷ¨Çó³ö»ù±¾Ê¼þÊý£¬¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊÖµ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ¹ØÓÚÉÌÆ·ºÍ·þÎñÆÀ¼ÛµÄ2¡Á2ÁÐÁª±í£º
| ¶Ô·þÎñºÃÆÀ | ¶Ô·þÎñ²»ÂúÒâ | ºÏ¼Æ | |
| ¶ÔÉÌÆ·ºÃÆÀ | 80 | 40 | 120 |
| ¶ÔÉÌÆ·²»ÂúÒâ | 70 | 10 | 80 |
| ºÏ¼Æ | 150 | 50 | 200 |
£¨¢ò£©¸ù¾Ý±íÖÐÊý¾Ý£¬¼ÆËã${K^2}=\frac{{200¡Á{{£¨80¡Á10-40¡Á70£©}^2}}}{150¡Á50¡Á120¡Á80}¡Ö11.111£¾10.828$£¬
¹Ê¿ÉÒÔÈÏΪÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.1%µÄǰÌáÏ£¬ÉÌÆ·ºÃÆÀÓë·þÎñºÃÆÀÓйأ»¡£¨8·Ö£©
£¨¢ó£©ÈôÕë¶ÔÉÌÆ·µÄºÃÆÀÂÊ£¬²ÉÓ÷ֲã³éÑùµÄ·½Ê½´ÓÕâ200´Î½»Ò×ÖÐÈ¡³ö5´Î½»Ò×£¬
ÔòºÃÆÀµÄ½»Ò×´ÎÊýΪ3´Î£¬²»ÂúÒâµÄ´ÎÊýΪ2´Î£¬ÁîºÃÆÀµÄ½»Ò×ΪA£¬B£¬C£¬²»ÂúÒâµÄ½»Ò×Ϊa£¬b£¬
´Ó5´Î½»Ò×ÖУ¬È¡³ö2´ÎµÄËùÓÐÈ¡·¨Îª
£¨A£¬B£©£¬£¨A£¬C£©£¬£¨A£¬a£©£¬£¨A£¬b£©£¬£¨B£¬C£©£¬£¨B£¬a£©£¬£¨B£¬b£©£¬
£¨C£¬a£©£¬£¨C£¬b£©£¬£¨a£¬b£©£¬¹²¼Æ10ÖÖÇé¿ö£¬
ÆäÖÐÖ»ÓÐÒ»´ÎºÃÆÀµÄÇé¿öÊÇ
£¨A£¬a£©£¬£¨A£¬b£©£¬£¨B£¬a£©£¬£¨B£¬b£©£¬£¨C£¬a£©£¬£¨C£¬b£©£¬¹²¼Æ6ÖÖ£¬
Òò´Ë£¬Ö»ÓÐÒ»´ÎºÃÆÀµÄ¸ÅÂÊΪP=$\frac{6}{10}=\frac{3}{5}$£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéºÍÁоٷ¨Çó¹Åµä¸ÅÐ͵ĸÅÂÊÎÊÌ⣬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®Í¨¹ýÊг¡µ÷²é£¬µÃµ½Ä³²úÆ·µÄ×ʽðͶÈëx£¨ÍòÔª£©Óë»ñµÃµÄÀûÈóy£¨ÍòÔª£©µÄÊý¾Ý£¬Èç±íËùʾ£º
£¨¢ñ£©¸ù¾ÝÉϱíÌṩµÄÊý¾Ý£¬ÓÃ×îС¶þ³Ë·¨ÇóÏßÐԻعéÖ±Ïß·½³Ì${\;}_{y}^{¡Ä}$=bx+a£»
£¨¢ò£©ÏÖͶÈë×ʽð10£¨ÍòÔª£©£¬Çó¹À¼Æ»ñµÃµÄÀûÈóΪ¶àÉÙÍòÔª£®
²Î¿¼¹«Ê½£º»Ø¹éÖ±Ïߵķ½³ÌÊÇ£º${\;}_{y}^{¡Ä}$=${\;}_{b}^{¡Ä}$x+${\;}_{a}^{¡Ä}$£¬ÆäÖÐb=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{{{\sum_{i=1}^{n}x}_{i}^{2}-{n}_{x}^{-}}^{2}}$£¬${\;}_{a}^{¡Ä}$=${\;}_{y}^{-}$-${\;}_{b}^{¡Ä}$${\;}_{x}^{-}$£®
| ×ʽðͶÈëx | 2 | 3 | 4 | 5 | 6 |
| ÀûÈóy | 2 | 3 | 5 | 6 | 9 |
£¨¢ò£©ÏÖͶÈë×ʽð10£¨ÍòÔª£©£¬Çó¹À¼Æ»ñµÃµÄÀûÈóΪ¶àÉÙÍòÔª£®
²Î¿¼¹«Ê½£º»Ø¹éÖ±Ïߵķ½³ÌÊÇ£º${\;}_{y}^{¡Ä}$=${\;}_{b}^{¡Ä}$x+${\;}_{a}^{¡Ä}$£¬ÆäÖÐb=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{{{\sum_{i=1}^{n}x}_{i}^{2}-{n}_{x}^{-}}^{2}}$£¬${\;}_{a}^{¡Ä}$=${\;}_{y}^{-}$-${\;}_{b}^{¡Ä}$${\;}_{x}^{-}$£®
6£®ÒÑÖª$\overrightarrow a=£¨-3£¬2£¬5£©$£¬$\overrightarrow b=£¨1£¬x£¬-1£©$£¬ÇÒ$\overrightarrow a•\overrightarrow b=4$£¬ÔòxµÄÖµÊÇ£¨¡¡¡¡£©
| A£® | 6 | B£® | 5 | C£® | 4 | D£® | 3 |
16£®ÒÑÖª2cos2x+sin2x=Asin£¨¦Øx+¦Õ£©+b£¨A£¾0£¬0£¼¦Õ£¼¦Ð£©£¬ÔòA£¬¦Õ£¬bµÄÖµ·Ö±ðΪ£¨¡¡¡¡£©
| A£® | $A=2£¬¦Õ=\frac{¦Ð}{4}£¬b=1$ | B£® | $A=\sqrt{2}£¬¦Õ=\frac{¦Ð}{6}£¬b=2$ | C£® | $A=\sqrt{2}£¬¦Õ=\frac{¦Ð}{6}£¬b=1$ | D£® | $A=\sqrt{2}£¬¦Õ=\frac{¦Ð}{4}£¬b=1$ |
3£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãf£¨x-1£©µÄ¶Ô³ÆÖáΪx=1£¬f£¨x+1£©=$\frac{4}{f£¨x£©}$£¨f£¨x£©¡Ù0£©£¬ÇÒÔÚÇø¼ä£¨1£¬2£©Éϵ¥µ÷µÝ¼õ£¬ÒÑÖª¦Á¡¢¦ÂÊǶ۽ÇÈý½ÇÐÎÖÐÁ½Èñ½Ç£¬Ôòf£¨sin¦Á£©ºÍf£¨cos¦Â£©µÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
| A£® | f£¨sin¦Á£©£¾f£¨cos¦Â£© | B£® | f£¨sin¦Á£©£¼f£¨cos¦Â£© | ||
| C£® | f£¨sin¦Á£©=f£¨cos¦Â£© | D£® | ÒÔÉÏÇé¿ö¾ùÓпÉÄÜ |
20£®¶þ´Îº¯Êýy=ax2+bx+c£¨x¡ÊR£©µÄ²¿·Ö¶ÔÓ¦ÖµÈç±í£º
ÔòÒ»Ôª¶þ´Î²»µÈʽax2+bx+c£¾0µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
| x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| y | -6 | 0 | 4 | 6 | 6 | 4 | 0 | -6 |
| A£® | {x|x£¼-2£¬»òx£¾3} | B£® | {x|x¡Ü-2£¬»òx¡Ý3} | C£® | {x|-2£¼x£¼3} | D£® | {x|-2¡Üx¡Ü3} |