题目内容
2.P是双曲线C:x2-y2=2左支上一点,直线l是双曲线C的一条渐近线,P在l上的射影为Q,F2是双曲线C的右焦点,则|PF2|+|PQ|的最小值为( )| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $3\sqrt{2}$ | D. | $2+\frac{{\sqrt{2}}}{2}$ |
分析 求出双曲线的ab,c,以及一条渐近线方程,运用双曲线的定义,可得|PF2|+|PQ|=|PF1|+2$\sqrt{2}$+|PQ|,依题意,当且仅当Q、P、F1三点共线,且P在F1,Q之间时,|PF1|+|PQ|最小,且最小值为F1到l的距离,从而可求得|PF2|+|PQ|的最小值.
解答
解:双曲线C:x2-y2=2的a=b=$\sqrt{2}$,c=2,
一条渐近线l方程为x-y=0,
设双曲线的左焦点为F1,连接PF1,
由双曲线定义可得|PF2|-|PF1|=2a=2$\sqrt{2}$,
∴|PF2|=|PF1|+2$\sqrt{2}$,
∴|PF2|+|PQ|=|PF1|+2$\sqrt{2}$+|PQ|,
当且仅当Q、P、F1三点共线,且P在F1,Q之间时,
|PF1|+|PQ|最小,且最小值为F1到l的距离,
可得F1(-2,0)到l的距离d=$\frac{|-2-0|}{\sqrt{2}}$=$\sqrt{2}$,
∴|PQ|+|PF2|的最小值为2$\sqrt{2}$+$\sqrt{2}$=3$\sqrt{2}$.
故选:C.
点评 本题考查双曲线的简单性质,利用双曲线的定义将|PF2|转化为|PF1|+2 a是关键,考查转化思想和运算能力,属于中档题.
练习册系列答案
相关题目
11.若a,b,c为实数,则下列结论正确的是( )
| A. | 若a>b,则ac2>bc2 | B. | 若a<b<0,则a2>ab | C. | 若a<b,则$\frac{1}{a}$$>\frac{1}{b}$ | D. | 若a>b>0,则$\frac{b}{a}$$>\frac{a}{b}$ |
12.
为了完成对某城市的工薪阶层是否赞成调整个人所得税税率的调查,随机抽取了60人,作出了他们的月收入频率分布直方图(如图),同时得到了他们月收入情况与赞成人数统计表(如表):
(1)试根据频率分布直方图估计这60人的平均月收入;
(2)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求2人都不赞成的概率.
| 月收入(百元) | 赞成人数 |
| [15,25) | 8 |
| [25,35) | 7 |
| [35,45) | 10 |
| [45,55) | 6 |
| [55,65) | 2 |
| [65,75) | 2 |
(2)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求2人都不赞成的概率.