题目内容

首项为1,公差不为0的等差数列{an}中,a3、a4、a6是一个等比数列的前三项,则这个等比数列的第四项是(  )
A、8B、-8C、-6D、不确定
考点:等差数列与等比数列的综合
专题:等差数列与等比数列
分析:设出等差数列的公差,由a3、a4、a6是一个等比数列的前三项列式求出公差,得到等比数列的前三项,则第四项可求.
解答: 解:设等差数列{an}的公差为d(d≠0),
由a3、a4、a6是一个等比数列的前三项,得:
a42=a3a6
又a1=1,
得(1+3d)2=(1+2d)(1+5d),解得:d=-1.
∴等比数列的前三项分别为:-1,-2,-4.
则该等比数列的第四项为-8.
故选:B.
点评:本题考查了等差数列的通项公式,考查了等比数列的性质,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网